The TIDA-00601 design uses isolated shunt sensors to implement a Class 0.5% three-phase energy metering system. Isolation is achieved by using an isolated Delta-Sigma modulator with a capacitively isolated output circuit. The energy metering SoC takes different bit streams from the isolated modulator and uses its onboard digital filter to generate ADC sample readings. The energy metering SoC is also used to sense voltages, calculate metering parameter values, drive the board LCD, and communicate with the PC GUI via the board's isolated RS-232 circuitry.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Flyback converters are the preferred topology in the SMPS (switched-mode power supply) for medium- and low-power range applications because they are simple and economic. They have less components and are efficient in isolating the output from input. They are used in battery-powered applications, universal AC/DC converters, and industrial and telecommunication equipment. Isolated converters traditionally regulate the output voltage and current by utilizing a secondary side regulation (SSR) composed of an optocoupler and secondary error amplifier.
Maker LED displays make using LED matrix displays easy. The ready-to-use, fully assembled circuit board has everything you need to run your monitor - just plug it in! Using and customizing the display is easy, with a specially written Arduino library and a dozen pre-made examples. The Maker LED display also has Wi-Fi so it can connect to the Internet to retrieve and display information. Choose between 32 x 9 pixel or 64 x 9 pixel versions and select LED color: white, blue, red, green, orange or violet.
Supports data monitoring and PD packet injection on CC1 and CC2 lines, and voltage and current detection on VBUS and VCONN.
This reference design is a resistance thermometer (RTD) front end with an IO-Link compatible sensor transmitter. This design uses the well-proven IO-LINK PHY and stack, and a 6mm wide form factor (compatible with standard M12 connectors) to quickly start IO-Link device development. TI also provides test results demonstrating the high accuracy of this RTD design (measurement error of 0.17°C over the -200°C to 850°C temperature range). The design also complies with IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5 and IEC 60255-5 standards, ensuring reduced time to market for real-world industrial applications. This design comes with a software package that provides a complete solution to speed your sensor transmitter time to market.
The Energy Monitor is designed as a complete set of tools for measuring and displaying the energy consumption of individual loads within a smart building, such as major appliances. This tool allows engineers to quickly evaluate TI's solutions for low-cost energy metering applications. The reference design comes with hardware and software design files to speed engineers' development process. The energy monitor design can also be expanded to integrate with TI's ZigBee and Wifi reference designs to add wireless communication capabilities to the end product.