The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators. The MAX17595 offers optimized input thresholds for universal input AC-DC converters and telecom DC-DC (36V to 72V input range) power supplies. It contains a built-in gate driver for an external n-channel MOSFET. The MAX17595 houses an internal error amplifier with 1% accurate reference, eliminating the need for an external reference.
The TIDA-00601 design uses isolated shunt sensors to implement a Class 0.5% three-phase energy metering system. Isolation is achieved by using an isolated Delta-Sigma modulator with a capacitively isolated output circuit. The energy metering SoC takes different bit streams from the isolated modulator and uses its onboard digital filter to generate ADC sample readings. The energy metering SoC is also used to sense voltages, calculate metering parameter values, drive the board LCD, and communicate with the PC GUI via the board's isolated RS-232 circuitry.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
NXPKITPF0100SKTEVBE is an interface tool equipped with a 56-pin QFN socket for programming the PF0x00 OTP register.
The MAX17690 is a peak current mode, fixed-frequency switching controller specifically designed for the isolated flyback topology operating in Discontinuous Conduction Mode (DCM). The device senses the isolated output voltage directly from the primary-side flyback waveform during the off-time of the primary switch. No auxiliary winding or optocoupler is required for output voltage regulation.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Flyback converters are the preferred topology in the SMPS (switched-mode power supply) for medium- and low-power range applications because they are simple and economic. They have less components and are efficient in isolating the output from input. They are used in battery-powered applications, universal AC/DC converters, and industrial and telecommunication equipment. Isolated converters traditionally regulate the output voltage and current by utilizing a secondary side regulation (SSR) composed of an optocoupler and secondary error amplifier.
The RD9Z1-638-12V is a battery management system (BMS) designed to demonstrate the capabilities of the MM9Z1J638 battery sensor module in 12 V lead-acid applications where high EMC performance is required to obtain high-precision measurements of critical battery parameters.
LSM9DS0 9-axis iNEMO combo module adapter board with standard DIL 24 socket, compatible with STEVAL-MKI109V2
The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators.