• You can log in to your eeworld account to continue watching:
  • Noise Index and Sensitivity (Part2)
  • Login
  • Duration:39 minutes and 13 seconds
  • Date:2024/06/30
  • Uploader:桂花蒸
Introduction
keywords: circuit Millimeter wave
Course Introduction: This digital course covers three topics: microwave/millimeter wave active and passive circuits, microwave/millimeter wave signal source design, and radio frequency transceiver system parameters.

□ Course objectives: To train students to have a full understanding of radio frequency transceiver systems and circuits, and to provide students with design examples to understand the implementation of various key radio frequency circuits.

■ Course unit:
Unit 1. Frequency synthesizer
1-1 Introduction to frequency synthesizer
1-2 Frequency synthesizer architecture
1-3 Frequency control and switching speed
1-4 Frequency synthesizer model
1-5 Frequency response of frequency synthesizer
1- 6 Signal tracking and locking of frequency synthesizer
1-7 Frequency synthesizer’s frequency locking range and stabilization time
1-8 Phasor and phase noise analysis
1-9 Phase noise of frequency synthesizer
1-10 Stability of frequency synthesizer Degree
1-11 Fractional frequency synthesizer
1-12 Difference integral modulation fractional frequency synthesizer

Unit 2.
2-1 Power and gain expression method (Part1)
2-1 Power and gain expression method (Part2)
2-2 Phase noise (Part1)
2-2 Phase noise (Part2)
2-3 Common nonlinear parameters of RF transceiver systems (Part1)
2-3 Common nonlinear parameters of RF transceiver systems (Part2)
2-3 Common RF transceivers System nonlinear parameters (Part3)
2-3 Common nonlinear parameters of RF transceiver systems (Part4)
2-3 Common nonlinear parameters of RF transceiver systems (Part5)
2-3 Common nonlinear parameters of RF transceiver systems (Part6)
2 -4 Noise index and sensitivity (Part1)
2-4 Noise index and sensitivity (Part2)
2-4 Noise index and sensitivity (Part3)

Unit 3-1. Transceiver circuit and system
3-1 Part1 Transceiver-Signal Transmitting and Receiving
3-1 Part2 Transmitting End-Upconverter Mixer and Power Amplifier
3-1 Part3 Transmitting and Receiving End-Filter and Switch
3-1 Part4 Receiving End-Low Noise Amplifier and Down-frequency Mixer
Unit 3-2. Frequency Modulation Radar Design and Application
3-2 Part1 Frequency Modulation Continuous Wave Radar
3-2 Part2 Monopulse Radar
3-2 Part3 CMOS Radar Design and Application
Unit 3-3. Network Analysis and Its Application
3-3 Part1 Dual Port network-impedance and admittance parameters and their analysis on balun
3-3 Part2 Dual-port network-analysis of transmission matrix
3-3 Part3 Single-frequency power divider and dual-frequency rat path coupler
3-3 Part4 Miniaturization Coupler Design
3-3 Part5 Multi-port Measurement and Buried Method
Unit 3-4. CMOS Active Circuit
3-4 Part1 CMOS Low Noise Amplifier
3-4 Part2 Millimeter Wave CMOS Circuit Considerations
3-4 Part3 CMOS Power Amplifier
3 - 4 Part4 Double Push Voltage Controlled Oscillator
Unfold ↓

You Might Like

Recommended Posts

Has anyone developed a complete electronics product?
Has anyone developed a complete electronic product? Did you make the shell yourself? Or was it custom made? Please explain the market situation and do you have any recommended manufacturers?
wugx Mobile and portable
Ask a question
Where can I find the snmp v2 or v3 code package of wind river? If it is complete, how many files are there in the package? Thank you.
单片机 Embedded System
I would like to ask, when Bluetooth sends data, one computer receives, and multiple lower computers send
Hello, I am just about to buy a Bluetooth module on Taobao to realize communication between the microcontroller and the computer, but I want one computer to receive data, and multiple microcontrollers
huangweichi123 51mcu
Help, 24V 5A power supply design solution
Dear experts, I need a constant voltage power supply with an output of 24V 5A, with a voltage accuracy of ±5%. It needs overcurrent, overvoltage, and short circuit protection. The protection function
gamesxu Power technology
Things you have to know about FPGA
FPGA (Field Programmable Gate Array) is translated into Chinese as: Field Programmable Gate Array, which is an integrated circuit in which designers can program customizable digital logic on site.1Wha
中信华 PCB Design
Switch control of street lights in different time periods
Street light switch control in different time periods[table][tr][td]Hello, friends of microcontrollers! I would like to ask a question. See how to solve this problem, use a microcontroller or other me
tonytong Analog electronics

Recommended Content

可能感兴趣器件

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号