The MAX15118 high-efficiency, current-mode step-down regulator with integrated power switches operates from 2.7V to 5.5V and delivers up to 18A output current in a small 2mm x 3mm package.
15W 5V Offline Flyback Converter Using the MAX17595
The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators. The MAX17595 offers optimized input thresholds for universal input AC-DC converters and telecom DC-DC (36V to 72V input range) power supplies.
The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators. The MAX17595 offers optimized input thresholds for universal input AC-DC converters and telecom DC-DC (36V to 72V input range) power supplies. It contains a built-in gate driver for an external n-channel MOSFET. The MAX17595 houses an internal error amplifier with 1% accurate reference, eliminating the need for an external reference. The switching frequency is programmable from 100kHz to 1MHz with an accuracy of 8%, allowing optimization of magnetic and filter components, resulting in compact and cost-effective power conversion.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Multi-voltage, high-efficiency, 25 W universal power module with robust performance from 6 V to 14 V inputs
The MAX15038 is a synchronous buck converter which delivers up to 4A load current at output voltages from 0.6V to 90% of VIN. The integrated circuit (IC) supports the input voltage from 2.9V to 5.5V. The total output error is less than ±1% overload, line, and temperature ranges
The MAX17690 implements an innovative algorithm to accurately determine the output voltage by sensing the reflected voltage across the primary winding during the flyback time interval. By sampling and regulating this reflected voltage when the secondary current is close to zero, the effects of secondary-side DC losses in the transformer winding, the PCB tracks, and the rectifying diode on output voltage regulation can be minimized.
12V Offline Flyback Converter Using the MAX17595
This reference design shows how to increase the output current of the MAX15006/MAX15007 linear regulators to meet the power-supply requirements for an automotive air bag.
The MAX17690 implements an innovative algorithm to accurately determine the output voltage by sensing the reflected voltage across the primary winding during the flyback time interval. By sampling and regulating this reflected voltage when the secondary current is close to zero, the effects of secondary-side DC losses in the transformer winding, the PCB tracks, and the rectifying diode on output voltage regulation can be minimized.
The MAX17690 implements an innovative algorithm to accurately determine the output voltage by sensing the reflected voltage across the primary winding during the flyback time interval. By sampling and regulating this reflected voltage when the secondary current is close to zero, the effects of secondary-side DC losses in the transformer winding, the PCB tracks, and the rectifying diode on output voltage regulation can be minimized.
Power over Ethernet (PoE) is a technology that allows network cables to deliver power to a powered device (PD) via power-sourcing equipment (PSE) or midspan, and has many advantages over traditional methods of delivering power.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications.
The MAXREFDES1034 is an auxiliary power supply for TV applications. This design provides a 5V output and up to 5A of load current for system power of auxiliary functions such as monitoring and control. A wide operating range from 11.5V to 28V allows system designers to adapt this design to their input voltage needs. As with most modern TVs, flat panel screens limit the available area for the converter. This power supply is a low-profile design, which considers modern TV sizes and available space. This design focuses on providing high efficiency while limiting the total height to 6mm.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.