The MAX17574, high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operates over a 4.5V to 60V input. The converter can deliver up to 3A current.
6.6 W wide-range input, dual output, isolated flyback converter for anti-magnetizing interference in utility meters using 900 V LinkSwitch-XT2 (LNK3696P)
This document details the MAXREFDES120# subsystem reference design, a 17V to 36V input, 5V output, no-opto flyback isolated power supply capable of 12.5W. Design files and test results are included. Hardware is available for purchase.
15W 12V Offline Flyback Converter Using the MAX17595
The MAXREFDES1244 is a No-Opto Flyback converter that delivers up to 1.2A at 5V from a 18V to 54V supply voltage. It is designed for industrial equipment that needs isolated voltage from wide input supply voltage.
IIS2DLPC adapter board for standard DIL24 socket
MAXREFDES115# is an efficient active clamp topology design with 24V input, and a 5V output at 4A (20W) of power. The design features the MAX17599, an active clamp, current-mode PWM controller optimized for industrial supplies.
The eXtreme switch evaluation board demonstrates the functionality of the MC20XS4200 as a 24 V dual high-side switch product.
TI's TIDC-EVSE-WIFI validated reference design details how to implement a J1772-compliant Level 1 and Level 2 Electric Vehicle Service Equipment (EVSE) solution with added Wi-Fi® functionality. The CC3100 network processor allows highly embedded devices such as EVSE to easily connect to existing wireless networks or directly to the device. By integrating this functionality into the EVSE, the design enables remote power monitoring and control of the charge status of connected electric vehicles.
TWRPI-MMA6900 is a towerSystem plug-in board containing Xtrinsic MMA6900Q inertial sensor for automotive and industrial applications.
The PMP20410 is a synchronous 4-switch buck/boost converter reference design using the LM5175 controller for battery charger applications. Output voltages from 1V to 10V can be selected over a current range of 13A to 28A by using a trim resistor on the FB pin with a bias voltage of 0.2V to 3.1V. This reference design also uses the nonsynchronous boost regulator LMR62014 to provide bias voltage for the LM5175 operating in 2.7V input voltage mode. The current mode controller has built-in LM5175 pulse-by-pulse current limiting function. This board includes enable, sync, and power-good functions. This reference design supports resistive heating elements with resistances ranging from 0.1Ω to 0.5Ω, allowing 80W of power to be supplied.
TI reference design TIDA-01095 has been tested as a DC/DC LED driver subsystem for high-power, high-efficiency dimmable LED luminaires. The design is built on a wireless SoC platform and enables brightness adjustment via analog as well as PWM dimming and control using any Bluetooth Smart device or ZiBee. High-bay and low-bay LED lighting fixtures are set to replace fluorescent and HID lamps as they cut energy consumption in half and virtually eliminate maintenance costs. Harvesting daylight by combining dimming with an ambient light sensor can result in additional energy savings of up to 50%, depending on the application. TI Reference Design TIDA-01095 provides high-efficiency DC/DC conversion that supports dimming, daylight harvesting, and wireless networked lighting control.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Many devices with rechargeable batteries use USB power to recharge the batteries while they are connected. This application note describes the power available from USB and how it can be used to charge batteries, including circuits and some hints.
LIS2MDL adapter board for standard DIL24 sockets