The ASL5015EVBMST is the main evaluation board for NXP's Matrix LED Controller (MLC) ASL5015SHN, which enables evaluation of external lighting systems.
This document describes a circuit that uses three MAX17541G buck converters and one MAX17504 step-down DC-DC converter. The circuit is arranged so that each buck converter uses the same input with four separate outputs. Each output has a different power specification. The MAX17541G regulator and features are given first, followed by the MAX17504 features.
This TI verified design provides principles, component selection, TINA-TI simulation, verification and measurement performance, Altium schematic, PCB layout for automotive battery pack monitoring applications. This design uses the automotive AEC-Q100 qualified 12-bit, 4-channel, 1Msps SAR ADC ADS7950-Q1 and isolated system hardware. This isolated input design with four-wire shunt resistors is ideal for such applications using high and low voltage automotive battery packs. It can be used to monitor battery pack current (from -5A to +5A) and extremely high voltages (up to 750V). TINA simulations on input and reference drivers validate design solutions and component selections, while measured results prove the performance of precision designs.
To meet the increasing demands for isolated Power over Ethernet (PoE) power solutions, Maxim’s power supply experts have developed
The TIDEP0066 reference design uses TI's Embedded Speech Recognition (TIesr) library to highlight the speech recognition capabilities of the C5535 and C5545 DSP devices; and based on successful keyword collection, indicates how to run speech to print pre-programmed keywords on the C5535eZdsp OLED screen Trigger example. This design also describes the steps to customize trigger words.
The TIDA-01559 is a Human Machine Interface (HMI) reference design that uses the MSP430FR2522 MCU and LP5569 device, and can achieve extremely low standby power consumption and offload the resources of the MCU with LED engine control. This solution can be used anywhere a low-power consuming HMI with good EMI performance and moisture immunity is required. Examples are a kitchen exhaust hood, cooker top, and refrigerator.
This reference design is built to enable multiple room comfort control in connected HVAC systems. Sensing temperature, humidity, and pressure allows independent monitoring and air-flow adjustment in each zone. This TI Design converts a constant air volume (CAV) into a variable air volume (VAV) system. Collected data can be transmitted wirelessly to the smart thermostat or gateway. Onboard sensors can be employed to allow predictive maintenance, shorten technical troubleshooting time, and reduce overall energy consumption. Long battery life allows the smart damper to run for many years without the need to spend time and money on battery replacement.
6.6 W non-isolated buck converter for small appliances using LinkSwitch-TN2 (LNK3207D)
When it is necessary to plug in a board into a system that is currently powered, it is critical to control the inrush current to prevent damage/system fault conditions. This application provides a simple circuit to achieve this function as well as an easy method for resetting the system and monitoring against temperature issues.
KITPF0100EPEVBE is targeted at standalone environments in NXPEvaluation board for the MMPF0100 power management integrated circuit (PMIC).
The MAX15050 is a high-efficiency switching regulator that delivers up to 4A load current at output voltages from 0.6V to (0.9 x VIN).
Integrate sensors, radios and other peripheral components into embedded designs that work easily with the Tower Plug-in Carrier Module (TWR-TWRPI-BD).
LIS331DLH adapter board for standard DIL 24 sockets
Wireless battery-powered smart locks are becoming more and more popular in today's market with the increasing number of building and residential owners looking to retrofit smart locks (or electronic locks) for their buildings or homes. In smart lock applications, high current motors and radios often have a faster battery drain rate, resulting in compromised battery life. Replacing multiple batteries can be time-consuming and costly, so reducing average current draw is often a key design consideration.
This reference design details an automotive daytime running light (DRL) and position light solution. The TPS92830-Q1 linear LED controller used in this design is powered directly from the car battery, thus allowing you to use the same LED for both functions. This reference design also has good EMC performance and provides comprehensive protection and diagnostics.