sigma

Half-bridge switching power supply charger lithium battery charger/lead-acid charger

 
Overview
This power supply is divided into a power part, a control part and a digital encoder control part. The EC11 digital encoder part outputs two 0-5V voltages to control the voltage and current respectively. The encoder part is currently not open source. It is also possible to replace the digital encoder section with two adjustable potentiometers. Control voltage and current adjustable lead-acid and lithium battery charger, maximum power 500W. This charger uses 2SC3320 power transistor, and it has been tested that it can operate stably at 500W power. The cost of making the main power board at Jiali Chuang does not exceed 60 yuan. The output power depends on the main transformer. The turning light is adjusted by a potentiometer, making it easy to set the turning light current. Equipped with lithium battery/lead-acid switch. Since lead-acid achieves third-level charging, such as 12V battery float charging 13.8 V and constant voltage 14.4 V, the voltage has steps to increase, and lithium batteries cannot be charged in this gear. To charge the lithium battery, the selector switch must be turned to the lithium position. At present, the parameters of the lead-acid gear are set to 12V. If you need to charge an electric vehicle, you need to adjust the float charging parameters. If it is a lithium battery, there is no need to adjust it. Just adjust the appropriate voltage and turn the switch to lithium battery.
          With short circuit and over temperature protection. By default, the power tube achieves over-temperature protection when it reaches 75° and starts when it is lower than 75°. The fan is set to start at 50°.
 There is no fuse on the power board and an external fuse must be installed on the casing. The current regulation of the control board is limited to the maximum current. Regarding the debugging of the main transformer howling during adjustment. When the main transformer is adjusted to a certain voltage, the frequency potentiometer can be adjusted to solve the whistling problem. The PCB project files are all attached and can be downloaded directly for plate making.
 
Front and back pictures of the power board:
   
 
 
Physical motherboard picture:
 
 
Physical picture of the finished product:
 
3D picture of the power board:  1JjSgIUKdmKYOdfBXB1zoJqzJMWADmW4zbbtjwCz.png3D picture of the control board
FNZB2uyGQjtkmFvZBDVSkXrPpPvaA6g9evpfLpLf.pngFront and back pictures of the control board
  Shell baffle picture: The shell can be installed 95*55*220 Aluminum alloy shell ammeter is available in a treasure 9 piece 9 Free shipping. The size of the installation opening should be based on the actual product. 
 
95-55-220 enclosure (auxiliary power switching transformer).PcbDoc
Control Board.PcbDoc
Charger baffle.PcbDoc
Power backplane.pdf
patch map.pdf
BOM download
61550
switching power supply

Introduction: Three-stage 12V lead-acid battery charger current is adjustable from 0-15A, charging and turning light current is 800mA, float charging and turning light current is 650mA, maximum power is 250W. Currently in normal use
 
 
 
 
Three-stage 12V lead-acid battery charger, current 0-15A adjustable, charging and turning light current 800mA, float charging and turning light current 650mA, maximum power 250W.
The charging voltage is 14.4V and the floating charging voltage is 13.8V. The Jiali Chuang board has been verified to be in normal use. Can be installed in 95*55 aluminum alloy shell.      
 
D17 is removed and the lithium iron phosphate battery can be charged. The voltage can be adjusted to 12.6V to charge the lithium battery.    
BOM download
PCB_494.PcbDoc_2022-09-24.pdf
PCB_494.PcbDoc_2022-09-24.json
494.PcbDoc_2022-09-24.pcbdoc
Gerber_494.PcbDoc.zip
Schematic_switching power supply_2022-09-24.pdf
SCH_switching power supply_2022-09-24.json
494 switching power supply.SchDoc_2022-09-24.schdoc
61551
Scan wifi on and off control

Introduction: Car station-car wireless SSID detection power outage
Mainly used in cars.
Cars such as driving recorders can emit WIFI. Some of our devices are connected to the battery. In order to solve the problem of powering off and powering on the battery equipment, a power-off and power-on module based on the ESP chip is designed here. When the WIFI SSID in the car is detected, the device will be powered on. The SSID disappears and the device is powered off.
Code view
https://gitee.com/arkisme/poweronoffcontrolthroughssid/tree/master
BOM download
PCB_PCB_Self-Product-Car Power Outage Detection_2022-09-24.pdf
PCB_PCB_Self-Product-Car Power Outage Detection_2022-09-24.json
PCB_Self-Product-Car power outage detection_2022-09-24.pcbdoc
Gerber_PCB_Self-Product-Car power outage detection.zip
Schematic_Scan wifi on-off control_2022-09-24.pdf
SCH_Scan wifi on/off control_2022-09-24.json
Sheet_1_2022-09-24.schdoc
61552
allinone3.SchDoc

Introduction: vesc75300, verify that it can be driven
vesc75300, it is verified that it can be driven, but I don’t know whether it was a misoperation or a design problem that caused the MCU to burn out. Due to personal energy, financial resources and other reasons, it has been put on hold indefinitely. Commercial use without permission is prohibited, and verification must be open source. It is best to replace ldo with rt9193 and 3.3v tantalum capacitor with tvs (such as smaj3.3). My abilities are limited, so please don’t criticize me. I hope someone can improve this solution.
There is no group yet, please leave a message
at the end, conflict! My superman!
2022 06 26 Latest news, after replacing the drive resistor with 22 ohms, the drive was successful, and the vbus was much more stable than before.
VESC_default_no_hw_limits.bin
vesc_75_300.pdf
BOM download
PCB_1.2vesc75300.pcbdoc_2022-09-24.pdf
PCB_1.2vesc75300.pcbdoc_2022-09-24.json
1.2vesc75300.pcbdoc_2022-09-24.pcbdoc
Gerber_1.2vesc75300.pcbdoc.zip
PCB_Copy of PCB_allinone3.SchDoc copy_2021-12-28 (2).pcbdoc_2022-09-24.pdf
PCB_Copy of PCB_allinone3.SchDoc copy_2021-12-28 (2).pcbdoc_2022-09-24.json
Copy of PCB_allinone3.SchDoc copy_2021-12-28 (2).pcbdoc_2022-09-24.pcbdoc
Gerber_Copy of PCB_allinone3.SchDoc copy_2021-12-28 (2).pcbdoc.zip
PCB_PCB_allinone3.SchDoc copy_2021-12-28.pcbdoc_2022-09-24.pdf
PCB_PCB_allinone3.SchDoc copy_2021-12-28.pcbdoc_2022-09-24.json
PCB_allinone3.SchDoc copy_2021-12-28.pcbdoc_2022-09-24.pcbdoc
Gerber_PCB_allinone3.SchDoc copy_2021-12-28.pcbdoc.zip
PCB_PCB_allinone3.SchDoc copy_2022-09-24.pdf
PCB_PCB_allinone3.SchDoc copy_2022-09-24.json
PCB_allinone3.SchDoc copy_2022-09-24.pcbdoc
Gerber_PCB_allinone3.SchDoc copy.zip
PCB_PCB_allinone3.SchDoc_2022-09-24.pdf
PCB_PCB_allinone3.SchDoc_2022-09-24.json
PCB_allinone3.SchDoc_2022-09-24.pcbdoc
Gerber_PCB_allinone3.SchDoc.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
Schematic_allinone3.SchDoc_2022-09-24.pdf
SCH_allinone3.SchDoc_2022-09-24.json
allinone3.SchDoc_2022-09-24.zip
61553
2021年A题——信号失真度测量装置

简介:本作品设计并制作了一个信号失真度测量装置,以32位MSP432开发板为控制核心,外围由低通滤波电路、可调放大电路、极性转换电路、过零比较电路等组成。测试结果表明该设计具有精度高和响应快等特点。
### 项目简介

本作品设计并制作了一个信号失真度测量装置,以32位MSP-EXP432E开发板为控制核心,外围由低通滤波电路、可调放大电路、极性转换电路、过零比较电路、显示屏以及HC06蓝牙模块组成。首先让输入信号通过低通滤波器滤除高频成分,接着通过可调放大电路对信号进行放大,放大后的信号一方面通过极性转换电路使所有波段的信号幅值尽可能宽的分布在0-3.3V之间,另一方面通过过零比较电路转换成方波以便单片机获取信号频率。单片机对输入信号的幅值和频率进行采样后利用相干检测的方法提取并计算谐波成分得到THD,最后将数据通过蓝牙模块传到APP上实现信号失真度显示。本系统已完成题目所有要求,测试结果表明该设计具有精度高和响应快等特点。

- - -

### 项目功能介绍

项目的相关功能的介绍和简介,如:
1、可以准确测量电压范围30-600mv、基频1kHz-100kHz的输入信号的失真度,误差≤5%;
2、可以将测量出来的失真度值的归一化幅值以及一个周期的波形在LCD屏上显示出来,且计算时间不超过10s;
3、可以将失真度数据通过蓝牙模块传至APP上显示出来。

- - -

### 项目属性

这里可填写项目的完成进度条,根据已完成的功能来选择复选框,也可以作为功能的完成度进度调显示

* [x] 原理图设计
* [x] PCB图设计
* [x] PCB打样
* [x] 焊接测试
* [x] 功能测试
* [x] 程序测试

- - -

### 电路讲解

本系统硬件电路由低通滤波电路、可调放大电路、极性转换电路、过零比较电路四个部分组成。

(1)低通滤波电路设计

为了滤除500KHz以上高频信号的干扰,利用FilterPro设计截止频率为500KHz低通滤波器,得到两级二阶低通滤波器如图1所示。

![image.png]
图1  低通滤波电路

(2)可调放大电路设计

可调放大电路由程控放大电路和反相放大电路两部分组成。程控放大电路是通过单片机判断信号幅值的区间来调节数字电位器的大小从而控制一级放大电路的放大倍数;程控放大电路和反相放大电路共同使信号幅值满足单片机采样的要求。可调放大电路如图2所示。

![image.png]
图2  可调放大电路

(3)极性转换电路设计

极性转换电路依据差分放大电路实现信号幅值的抬升,实现所有波段的信号幅值尽可能宽的分布在0-3.3V之间,以保证单片机采样的信号满量程且不失真。极性转换电路如图3所示。

![image.png]

图3 极性转换电路

(4)过零比较电路设计

过零比较电路是为了将正弦信号转化成方波信号,以便单片机通过定时器获取信号频率。过零比较电路如图4所示。

![image.png]

图4 过零比较电路

**电路参数设计分析**
**![image.png]



- - -

### 软件

``` C
void GPIOCap_Handler(void)
{
unsigned long ulStatus;
ulStatus = GPIOIntStatus(GPIO_PORTB_BASE, true); // 读取中断状态
GPIOIntClear(GPIO_PORTB_BASE, ulStatus); // 清除中断状态
if(ulStatus & GPIO_PIN_5)
{
TempFrequantNum++;
}


}

void Find_AWave(uint16_t *samplebuff,uint16_t *Wavebuff)
{
for(uint16_t i=0;i>8);
sendadcval[2*i+1] = (uchar)(tempbuff[i]);
//UARTprintf("%4dr",tempbuff[i]);

}
}
if(ModeType == 1)
{
for(int i=0;i>8);
sendadcval[2*i+1] = (uchar)(tempbuff[i]);
}
for(int i = 0;i<20;i++)
{
//CalWave20[i] = (float)tempbuff[i]/4096.0f*3.30f;
CalWave20[i] = (float)tempbuff[i];
//UARTprintf("%4dr",tempbuff[i]);
}

}
}


int main(void)
{
uint32_t aimfrequant = 0;


/* Configure the system clock for 120 MHz */
systemClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480),
120000000);

/* Initialize serial console */
ConfigureUART(systemClock);

/* Enable the clock to GPIO Port E and wait for it to be ready */
ADC_Sample(2000000);
spi_init();
MCP41010_SetRes(0);
FPULazyStackingEnable();
FPUEnable();

InputCapInit();
Timer1A_init();
Uart_Send_Init();

//Usart6Config();

ILI9341_INITIAL();
LCD_Clear(WHITE);

Make_ACG();






/* Wait loop */
while(1)
{
/* Wait for the conversion to complete */
//while(!bgetConvStatus);
//
// for(i=0;i<200;i++)
// {
//
// UARTprintf("%4drn", srcBuffer[i]);
// }
FindAndResolveData();
if(ModeType == 2)
{
basefre = Get_SinWave_ValidValues(1);
freq2 = Get_SinWave_ValidValues(2);
freq3 = Get_SinWave_ValidValues(3);
freq4 = Get_SinWave_ValidValues(4);
freq5 = Get_SinWave_ValidValues(5);
tempNum = freq2*freq2+freq3*freq3+freq4*freq4+freq5*freq5;
arm_sqrt_f32(tempNum,&tempNum);
tempDHT = tempNum / basefre;
}
if(ModeType == 1)
{
basefre = Get_SinWave_ValidValues_20(1);
freq2 = Get_SinWave_ValidValues_20(2);
freq3 = Get_SinWave_ValidValues_20(3);
freq4 = Get_SinWave_ValidValues_20(4);
freq5 = Get_SinWave_ValidValues_20(5);
tempNum = freq2*freq2+freq3*freq3+freq4*freq4+freq5*freq5;
arm_sqrt_f32(tempNum,&tempNum);
tempDHT = tempNum / basefre;
}
ADC_Sample(SampleNum);


Normalnization();

PackAndSendBuff(FrequantNum,Normalbasefre,Normalfreq2,Normalfreq3,Normalfreq4,Normalfreq5,tempDHT,sendadcval);


Show_FrequantList();
drawXY();
//SysCtlDelay(4*systemClock/1/3);
LCD_Clear(WHITE);


if(FrequantNum<20000)
{
SampleNum = FrequantNum * 100;
ModeType = 2;//选择模式2

}
else if(FrequantNum<=100000)
{
SampleNum = FrequantNum * 20;
ModeType = 1; //选择模式1
}
else
{
SampleNum = 2000000;
ModeType = 1;//选择模式1
}
aimfrequant = FrequantNum;
basefre = 0;
freq2 = 0;
freq3 = 0;
freq4 = 0;
freq5 = 0;
tempNum = 0;
tempDHT = 0;

}
}
```

- - -

### 图片

原理图:![image.png]pcb图:![DJ96W16A)S{VH}OSA~46@O.png]3D图:![image.png]实物图:![222.jpg]APP展示图:![Cache_211f4b567e8bc1e..jpg]
- - -

### 演示视频

演示视频见工程附件

- - -

### 注意事项

1、在PCB的布局过程中尽量使回路面积小,其次在焊接过程中注意防止电路氧化、注意电源接口的防正负误接;
2、在使用电阻电容之前,记得先测其参量的大小,防止老化元件影响电路的稳定性以及信号的干扰;
3、测试时,接线注意各接口的输入输出特性,防止接错,SMA插座在使用过程中注意不要太用力,防止接口损耗导致信号传输不稳定。




* **心得体会**:

我在测试的过程中遇到了各种各样的问题,但是通过思考和积极修改,克服了难关,我本人学的专业是电子信息工程,此次比赛让我把数字信号处理的理论知识用到实验当中,我感到非常开心。希望小伙伴在制作的过程中遇到困难也不要灰心,细心排查问题,我在这次也有做的不当的地方,在采购的时候少买了一个元器件,好在实验室板子上找到这个芯片,在后面的工作中一定要细致认知,学到的不仅仅学到理论,也锻炼了团队协作能力,只有团队协作顺利才能让我这么快质量这么高的完成任务,另外这是我第一次开源,要是有不当的地方希望小伙伴们指正,互相学习。
失真度测量装置代码.zip
测试方案.docx
测试视频.mp4
BOM下载
PCB_PCB_123456_5_2022-09-24.pdf
PCB_PCB_123456_5_2022-09-24.json
PCB_123456_5_2022-09-24.pcbdoc
Gerber_PCB_123456_5.zip
Schematic_2021年A题——信号失真度测量装置_2022-09-24.pdf
SCH_2021年A题——信号失真度测量装置_2022-09-24.json
Sheet_2_2022-09-24.schdoc
61554
【开发板】HI3861开发板

简介:基于OpenHarmony 开源鸿蒙系统开发,所有接口全部引出,预留烧录口、I2C接口,可支持PCA9685成品多路舵机控制板。
包含锂电池充电模块。
基于OpenHarmony 开源鸿蒙系统开发,所有接口全部引出,预留烧录口、I2C接口,可支持PCA9685成品多路舵机控制板。
包含锂电池充电模块。
BOM下载
PCB_PCB_HI3861开发板_2022-09-24.pdf
PCB_PCB_HI3861开发板_2022-09-24.json
PCB_HI3861开发板_2022-09-24.pcbdoc
Gerber_PCB_HI3861开发板.zip
Schematic_【开发板】HI3861开发板_2022-09-24.pdf
SCH_【开发板】HI3861开发板_2022-09-24.json
SCH_HI3861开发板_2022-09-24.schdoc
61555
【训练营】一只狗腿子

简介:简介:基于OpenHarmony 开源鸿蒙系统开发,核心板可控制十六个舵机,所有接口全部引出,预留烧录口、I2C接口,可支持PCA9685成品多路舵机控制板。

开源协议: GPL 3.0
【项目背景】参加仿生机器狗训练营,制作基于[ ITCAST-HI3861](https://so.szlcsc.com/global.html?k=c2923578)控制的小狗子。【项目简介】基于OpenHarmony 开源鸿蒙系统开发,核心板可控制十六个舵机,所有接口全部引出,预留烧录口、I2C接口,可支持PCA9685成品多路舵机控制板,用于后续狗子功能升级。【应用场景】1、可以控制机器狗、小蜘蛛、舵机、云台、机械臂等产品;2、通过I2C可支持16路以上舵机,如PCA9685有6个地址线,最大可级联62个PCA9685驱动板,共992路PWM。【制作过程】1、完成核心板电路设计,元件选型;2、完成PCB板设计,尺寸为80x40mm;3、相关元器件购买,PCB打样。 〓未完待续〓......
BOM下载
PCB_PCB_【训练营】一只狗腿子_2022-09-24.pdf
PCB_PCB_【训练营】一只狗腿子_2022-09-24.json
PCB_【训练营】一只狗腿子_2022-09-24.pcbdoc
Gerber_PCB_【训练营】一只狗腿子.zip
Schematic_【训练营】一只狗腿子_2022-09-24.pdf
SCH_【训练营】一只狗腿子_2022-09-24.json
SCH_【训练营】一只狗腿子_2022-09-24.schdoc
61556
#第七届立创电赛#基于N32G430USB电压电流表

简介:基于N32G430C8L7+INA199制作的USB电流表,精度1%,可以查看USB工作时候的电流电压。
Functions and features:
0.91-inch OLED screen, clear and compact display;
PCB board adapts to the public version shell;
uses low-resistance sampling resistor to prevent excessive internal resistance from affecting USB power supply efficiency;
maximum voltage measurement support: 6V
maximum measurement current: 2.8 A
supports power display
hardware design .
The main control
N32G430C8L7 microcontroller product uses a high-performance 32-bit ARM Cortex™-M4F core, integrates a floating-point unit (FPU) and digital signal processing (DSP), and supports parallel computing instructions. The maximum operating frequency is 128MHz, it integrates up to 64KB of on-chip encrypted storage Flash, supports multi-user partition permission management, and supports 16KB of embedded SRAM. Built-in an internal high-speed AHB bus, two low-speed peripheral clock buses APB and bus matrix, supports 40 reusable I/Os, provides rich high-performance analog interfaces, including a 12-bit 4.7Msps ADC, supports 16 external Input channels and 3 internal channels also provide a variety of digital communication interfaces, including 4 U(S)ART, 2 I2C, 2 SPI/I2S, and 1 CAN 2.0B communication interface. The N32G430C8L7 microcontroller product can stably operate in the temperature range of -40°C to +105°C, with a power supply voltage of 2.4V to 3.6V, and provides a variety of power consumption modes. This case does not use many resources. The internal clock has been open sourced to meet the design requirements, so there is no need for an external clock circuit. It should be noted that each power supply pin of the chip needs to be connected to an additional 100nF external filter capacitor, and pin 1 of the chip needs to be connected to an additional 4.7uf filter capacitor.
Reset circuit, BOOT circuit
programming interface
voltage conversion

current sampling, USB input/output
USB input/output The
USB input terminal uses a Type-A male connector, and the input voltage is 5V. This interface supports a maximum output of 3A. If it is larger, it will get a little hot. It is recommended not to exceed 3A. If you need to use a larger current, please replace the Type-A male connector.
The USB output terminal uses a 4P sinking plate female socket. In order to adapt to the public version of the housing, the maximum rated current of this female socket is 1.5A. The actual measured current is 2.5A, but it is not suitable for long-term operation at this current. If necessary If you use a larger current, please replace it yourself.
 
lv_0_20220822233139.mp4
N32G430C8L7-USBMeter.rar
61557
Bingdundun PCB version

Introduction: Bingdundun PCB version
Bingdundun PCB version
BOM download
PCB_PCB_Bingdundun PCB version_2022-09-24.pdf
PCB_PCB_bingdundun PCB version_2022-09-24.json
PCB_Bingdundun PCB version_2022-10-02.pcbdoc
Gerber_PCB_bingdundun PCB version_2022-10-02.zip
61558
3.7 to 12VMAX synchronous boost board, low ripple

Introduction: 3.7 to 12VMAX synchronous boost board, theoretical maximum output 9V3A, post-stage Π filtering but the loop stability has not been evaluated
3.7 to 12VMAX synchronous boost board, theoretical maximum output 9V3A, post-stage Π filtering but the loop stability has not been evaluated
PCB_PCB1_2022-11-05.pdf
BOM_Board1_PCB1_2022-11-05.xlsx
Altium_3.7 to 12VMAX synchronous boost board, low ripple_2022-11-05.zip
PDF_3.7 to 12VMAX synchronous boost board, low ripple_2022-11-05.zip
BOM_Board1_dengt_2022-11-05.xlsx
61559
electronic
参考设计图片
×
 
 
Search Datasheet?

Supported by EEWorld Datasheet

Forum More
Update:2025-05-23 01:21:37

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号