The TIDA-00792 TI Design provides monitoring, balancing, primary protection and gauging for a 12 to 15 cell lithium-ion or lithium-iron phosphate based batteries. This board is intended to be mounted in an enclosure for industrial systems. The reference design subsystem provides battery protection and gauging configuration with parameters avoiding code development and provides high side protection switching to allow simple PACK- referenced SMBus communication for battery status even while protected.
The TIDA00255 reference design utilizes the bq76940 analog front end (AFE) IC. It can measure battery voltage, mold temperature or external thermistor voltage using a 14-bit ADC. Current is measured individually by a separate 16-bit coulomb counter. The design turns off the low-side power FET to stop discharging or charging based on selected hardware limits. A microcontroller not included in this design will be part of the battery controller to communicate with the AFE to set protection thresholds, enable the power FETs, provide fault recovery, and shut down the FETs during over/under temperature conditions. Battery controller designs may include additional features that are not part of this reference design, such as secondary overvoltage protection, measurement, and isolated communications to inform the system of battery status.
The Vienna rectifier power topology is used in high power three-phase power factor (AC-DC) applications such as off-board EV chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller (MCU) to control a power stage. Monitoring and control of Vienna rectifiers is also implemented based on HTTP GUI pages and Ethernet support (F2838x only). The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C2000 microcontroller to control a Vienna rectifier. The Vienna rectifier power topology is used in high power three-phase power factor (AC/DC) applications such as off-board electric vehicle (EV) chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller to control a power stage. The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C200-MCU to control a Vienna rectifier. Learn more about what C2000 MCUs can offer for electric vehicle applications
Interleaved Continuous Conduction Mode (CCM) Totem Pole (TTPL) Bridgeless Power Factor Correction (PFC) using high-bandgap GaN devices is an attractive power topology due to its high power efficiency and reduced size. This design illustrates the use of a C2000™ MCU and LMG3410 GaN FET module to control this power stage. To improve efficiency, this design uses adaptive dead time and phase shedding methods. Nonlinear voltage compensators are designed to reduce overshoot and undershoot during transients. This design chooses a software phase locked loop (SPLL) based approach to accurately drive the totem pole bridge. The hardware and software used in this design help reduce your time to market.
This reference design outlines how to implement a three-stage, three-phase SiC-based AC/DC converter with bidirectional functionality. The high switching frequency of 50kHz reduces the size of the magnetic components in the filter design and therefore increases the power density. SiC MOSFETs with switching losses enable higher DC bus voltages up to 800V and lower switching losses, with peak efficiencies greater than 97%. This design can be configured as a two-stage or three-stage rectifier. For design information on DC/AC implementation, see TIDA-01606 . The system is controlled by a single C2000 microcontroller (MCU), TMS320F28379D, which generates PWM waveforms for all power electronic switching devices in all operating modes.
This reference design utilizes an isolated modulator and independent digital filter to implement a Class 0.5 three-phase power measurement system with an isolated shunt sensor, eliminating the need for an integrated synchronization filter and allowing an optional host microcontroller (MCU). ) will be broader in scope. In this design, the current sensed by the isolated modulator and the phase voltage sensed by the host microcontroller are synchronized; more advanced metering algorithms are supported using the Simplelink™ ARM Cortex M4 host MCU. This design protects against magnetic tampering attacks by using current sensors and a power supply that does not use any transformers or other magnetic components. This subsystem design has been tested and includes hardware.
This reference design implements Class 0.1 split-phase energy metering using a high-performance, multi-channel analog-to-digital converter (ADC). An independent ADC samples the current transformer (CT) output at 8kHz and measures the current and voltage at each branch of the main AC power supply. The reference design achieves high accuracy over a wide input current range (0.05 – 100 amps) and supports high sampling frequencies when necessary to enable advanced power quality features such as independent harmonic analysis. Using a stand-alone ADC to sample the CT output gives designers more flexibility in selecting a metrology microcontroller than an integrated SoC and application-specific dedicated products. This reference design uses the SimpleLink™ ARM Cortex-M4 host microcontroller to calculate energy metering parameters. The design can also use an ADC sampling rate of 32ksps by enabling only a subset of the total energy measurement parameters.
You can use the Bluetooth and MSP430 audio source reference designs to create a variety of applications for low-end, low-power audio solutions, including toys, projectors, smart remote controls, and a variety of audio playback accessories. This reference design is an affordable audio implementation with complete design files, allowing you to focus on application and end product development. This reference design is also available with the TI Bluetooth Stack.
This antenna board reference design contains multiple low-cost antenna solutions for sub-1 GHz and 2.4 GHz short-range wireless systems.
This "RF Layout Reference Design" demonstrates excellent decoupling and layout techniques for low power RF devices in the 169 MHz band.