This design uses the variable gain wideband amplifier VCA810 to increase the gain and expand the AGC control range, and uses software compensation to reduce the step interval of the gain adjustment and improve the accuracy. The input part uses a high-speed voltage feedback op amp 0 P A842 as a follower to increase the input impedance, and a protection circuit is added to the input part without affecting performance. Various anti-interference measures are used to reduce noise and suppress high-frequency self-excitation. The power output part is made of discrete components. The passband of the entire system is 4.4 k Hz ~ 8.4 MH z, with a minimum gain of 0 dB and a maximum gain of 70 dB. The gain step is ld B/6dB/arbitrarily set. The error between the preset gain and the actual gain below 60 dB is less than 0.2 dB. The effective value of the undistorted output voltage reaches 10.1 V, and the AGC control range is 52 dB when outputting 4.5 ~ 5.5 V.
This design is a wing add-on that attaches to the OrangeCrab and adds a Sharp Memory LCD. 400x240 on/off pixels. The board is the size of the monitor.
SYZYGY is an FPGA extension standard for medium to high speed interfaces. This breakout connects the Channel 0 TX/RX SerDes from the SYZYGY-TXR connector to the edge of the card to act as a PCIe x1 add-in card.
High-frequency critical conduction mode (CrM) totem pole power factor correction (PFC) is an easy way to design high-density power solutions using GaN. The TIDA-0961 reference design uses TI's 600V GaN power stage LMG3410 and TI's Piccolo™ F280049 controller. This high-density (165 x 84 x 40mm) 2-stage dual-interleaved 1.6kW design is suitable for a variety of space-constrained applications such as server, telecom and industrial power applications. Power stage interleaving reduces input and output ripple current. Hardware is designed to meet conducted emission, surge and EFT requirements to help designers achieve 80+ Titanium specifications.
This design provides a reference solution for a three-phase inverter rated up to 10kW, designed using the reinforced isolated gate driver UCC21530, reinforced isolated amplifiers AMC1301 and AMC1311, and MCU TMS320F28027. Lower system cost can be achieved by using the AMC1301 with the MCU's internal ADC to measure the motor current and using a bootstrap supply for the IGBT gate driver. The inverter is designed with protection against overload, short circuit, ground fault, DC bus under/overvoltage and IGBT module overtemperature.
This reference design is a complete solution for a brushless DC ceiling fan controller operating on AC power. It uses the DRV10983 24V three-phase motor driver to drive the motor through sinusoidal current and sensorless control. UCC28630 converts 90-265 VAC to 24 VDC. The MSP430G2201 Value Series processor decodes the infrared signal used for speed control. The included firmware allows easy integration of standard infrared remote controls based on the NEC transmission protocol.
PMP20327 is a synchronous 4-switch buck/boost converter using the LM5175 controller and can be used as a reference design for heater element power stages in applications such as e-cigarettes. Output voltages from 1V to 10V can be selected over a current range of 20A to 45A by using a trim resistor on the FB pin with a bias voltage of 0.2V to 3.1V. This design also uses the non-synchronous boost regulator LMR62014 to provide the bias voltage for the LM5175 operating in low input voltage mode. The current mode controller has built-in LM5175 pulse-by-pulse current limiting function. This board includes enable, sync, and power-good functions. The design supports resistive heating elements with resistances ranging from 0.1Ω to 0.5Ω, thus supporting a variety of 200W operating conditions.
The collection of papers from previous electronic design competitions includes design ideas, circuit diagrams and corresponding program flow charts for function signal generators, oscilloscopes, automatically controlled balancing cars, radios, etc.
The PMP21251 reference design uses the UCC28056 CRM/DCM PFC controller, UCC256304 enhanced LLC controller and integrated driver to provide a 12V/10.8A output (continuous current, 14.4A peak current) from a universal AC input. This design achieves peak efficiency of 92.4% at 115VAC input and 94.0% at 230VAC input. Efficiency and power factor also meet 115V and 230V internal 80 PLUS Gold specifications and DoE Level VI requirements. Additionally, without turning off the PFC, the design can achieve power consumption as low as 89mW at an input supply voltage of 230VAC.
Maxim Integrated partnered with First Sensor to design a reference design featuring the First Sensor 4-channel APD array, Maxim quad TIA with multiplexer MAX40662, and Maxim single fast comparator MAX40026.
Many modern systems have the majority of their electronics powered by 3.3V or lower, but must drive external loads with ±10V, a range that is still very common in industrial applications. There are digital to analog converters (DACs) available that can drive loads with ±10V swings, but there are reasons to use a 3.3V DAC and amplify the output voltage up to ±10V.
The system developed in this article is based on the existing triggered voice time reporting system, adding a speech recognition circuit, so that the developed system can have the function of dialogue response time reporting, and realize the truly automated and intelligent voice time reporting.
The KITOPAMP1120 provides a selection of operational amplifiers and comparators useful for evaluation and to promote the product family.
This reference design provides design guidance, data, and other content for a 3-phase multilevel inverter with 5-level output. It uses 150V MOSFET to drive AC 200V motor.
The 1000W Class D Audio Amplifier Reference Design provides examples of audio amplifiers and push-pull power converters. It runs using the KV1x Tower® Series platform or the k64 Freedom board.
In order to preserve the quality of HDTV and progressive DVD video, a bank of three (RGB/YPbPr), 5-pole reconstruction filters are used to set the 30MHz bandwidth and to provide the >40dB selectivity required by EIA770-3.