This provides a fully digital design of LLC resonant converter based on HVP-LLC. The HVP-LLC development board is part of the NXP® High Voltage Platform.
Combined with the HVP-KV46F150 control card, it provides a ready-made software development platform for a 250-watt power supply with an input voltage of 390V DC and an output of 12V/21A.
This reference design demonstrates the implementation of an LLC resonant converter using the MC56F83783, MC56F81xxx, or MC56F82748 digital signal controller (DSC).
The three-phase power meter reference design is used to measure and record active and reactive energy in directly connected three-phase networks. It is pre-certified to the European EN50470-1, EN50470-3, Class B and Class C, and IEC 62053-21 and IEC 62052-11 international standards for active energy class 2 and class 1 electronic meters.
The full-bridge DC-DC switch mode power supply reference design is based on V-Series MCUs and is intended to provide examples of power conversion applications. A full-bridge DC-DC converter is a transformer-isolated step-down converter. The full-bridge topology consists of a full-bridge inverter module, transformer, synchronous rectifier module and filter.
The Sub-μA Current Sensor is a Kinetis K22F based current measurement board running on FreeRTOS and can be used with the Freedom Development Ecosystem or any other Arduino-like development board.
This reference design allows for non-intrusive connection between any MCU and a 3.3V shield and measurement of a wide range of low currents (~60 nA – 5 mA). Multiple communication methods are available, including integration with Freedom Sensor Toolbox (CE).
This DIY LiPo super charger can charge a single LiPo battery and protect it from overvoltage, overload and short circuit. In addition, it can boost the battery voltage to 5 V or 12 V. The boosted output voltage is protected by an "eFuse" IC with a maximum output current of 1.52 A at 5 V and 0.76 A at 12 V. The charger part of the circuit requires a +5V power supply, which can be connected via USB-C, or simply solder two wires to pads on the PCB. Additionally, other connections can be soldered to pads on the PCB or use individual pin headers.