• You can log in to your eeworld account to continue watching:
  • Examples of forecasting the rise and fall of the Shanghai Composite Index
  • Login
  • Duration:6 minutes and 3 seconds
  • Date:2018/04/01
  • Uploader:老白菜
Introduction
This course is aimed at all types of programming learners. It explains the currently popular machine learning-related technologies and methods, helps learners master the basic ability of machine learning algorithms to solve general problems using Python language, and gets a glimpse of the mysteries of cutting-edge machine learning algorithms.
This course introduces scikit-learn, a popular machine learning algorithm library in the Python computing ecosystem. These algorithms have extremely wide application potential in engineering, information, management, economics and other disciplines, and are used by major scientific research institutes and internationally renowned institutions around the world. Widely used by companies, it includes two parts: compulsory content and elective content.

The compulsory contents include:
(1) Understanding machine learning, introducing classic algorithms by introducing the basic problems of machine learning (classification, clustering, regression, dimensionality reduction);
(2) Python third-party library sklearn (scikit-learn), explaining the application of machines Learn algorithms to quickly solve real-world problems.
The elective content includes:
(1) Explanation of the machine learning principles behind AlphaGo (reinforcement learning);
(2) Demonstration of game battle examples to demonstrate the powerful charm of independent learning through examples.

According to the content characteristics of the third-party library, the course is divided into 6 content modules and 2 practical modules:

Module 1: Basic ideas and principles of machine learning vs. sklearn library
Module 2: Clustering, algorithms and use cases of unsupervised learning (sklearn in K-means, DBSCAN)
Module 3: Dimensionality reduction, algorithms and use cases
of unsupervised learning (PCA, NMF in sklearn) Module 4: Classification, algorithms and use cases of supervised learning (KNN, Naive Bayes, Decision Tree in sklearn )
Module 5: Regression, algorithms and use cases of supervised learning (linear regression, non-linear review in sklearn)
Module 6 (Practical): Writing examples of supervised learning to achieve handwriting recognition, algorithm comparison and analysis
Module 7 (Elective): Reinforcement learning methods, Deep Learning
Module 8 (Elective, Practical Combat): Practical Project: Flappy Bird Game Intelligent Battle
Unfold ↓

You Might Like

Recommended Posts

nRF2401, nRF2401A, nRF24L01.....What are the differences between these series?
nRF2401, nRF2401A, nRF24L01.....What are the differences between these series?
boming RF/Wirelessly
5.16 EEWORLD Spring Outing 3rd Post
How do I upload photos? OK, I'll get it done after the meeting tomorrow! :) [[i] This post was last edited by DIAG on 2010-5-17 23:16 [/i]]
DIAG Talking
The last book: "5G For Dummies" check-in post (Qorvo reading series event)
[align=left][size=4][font=微软雅黑]Event Main Site: [/font][url=https://en.eeworld.com/bbs/thread-578778-1-1.html]Click here to view [/url][/size][/align][align=left][size=4]Event First Site: [url=https:/
EEWORLD社区 RF/Wirelessly
POWERPCB area highlights and practical posts at a glance
POWERPCB区精华及实用贴一览 [table][tr][td] [table=98%,#f3f394][tr][td][b][color=#ff0000]1、POWERPCB元件制作详解--[/color][font=Verdana][color=#61b713]guoxiufeng[/color][/font][/b][/td][td][url=http://www.pcbbbs.com/v
静若幽兰 PCB Design
Which quantities should be transformed and which should not be transformed in the 3s/2s transformation of motor control
As the title says, I am not sure which variables are transformed in the 3s/2s transformation and what is the basis? If no transformation is done, what is the basis?
kata Power technology
Wince
I just started to learn WinCe, and I would like to ask some questions: 1. What does #define CAM_CODEC_SACLER_START_BIT (1Sig && CIS_SIG == p->Sig ) What is VALID_CONTEXT( p )? What type does the param
xushangjin Embedded System

推荐文章

STM32通过Python下载bin文件 2025年01月08日
例子: test connection stm32loader -p /dev/tty.SLAB_USBtoUART dump content of FLASH memory stm32loader -p /dev/tty.SLAB_USBtoUART -d save content of FLASH memory stm32loader -p /dev/tty.SLAB_U...
用Python自动化双脉冲测试 2024年10月18日
电力电子设备中使用的半导体材料正从硅过渡到宽禁带(WBG)半导体,比如碳化硅(SiC)和氮化镓(GaN)等半导体在更高功率水平下具有卓越的性能,被广泛应用于汽车和工业领域中。由于工作电压高,SiC技术正被应用于电动汽车动力系统,而GaN则主要用作笔记本电脑、移动设备和其他消费设备的快速充电器。本文主要说明的是宽禁带FET的测试,但双脉冲测试也可应用于硅器件、MOSFET或I...
如何在STM32F4 ARM MCU和Python之间建立USART通信 2024年05月11日
步骤1:软件和硬件要求 在硬件方面,您需要: STM32F4发现板(或其他任何STM32板) USB转TTL转换器 在软件方面: STM32CubeMX Keil uVision5 已安装串行库的Python 步骤2:STM32CubeMX配置 首先让我们了解我们想要做什么。我们希望通过USART从Python将数据传输到板上,并检查是否有正确的数据并切换LED。因此,我...
泰克推出面向测试和测量仪器的开源 Python 原生驱动程序包 2023年11月15日
明显改善测试自动化相关用户体验,并为泰克和 Keithley 的客户提供无缝的仪器控制效果 中国北京2023年 11 月 15 日 – 业内领先的测试与测量解决方案提供商泰克科技公司于今天宣布推出开源 Python 仪器驱动程序包。 该软件包完全免费,可面向仪器自动化应用提供原生的 Python 用户体验。 这款开源 Python 驱动程序包可以兼容大量泰克和 Keit...

Recommended Content

Circuit

可能感兴趣器件

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号