The MAXREFDES1161# is a small form factor, high accuracy, 2-wire 4mA to 20mA transmitter which integrates all functional and protection blocks in a small 1.0in x 0.6in dual-row header footprint that is compatible with breadboards and off-the-shelf peripheral expansion boards.
The MAXREFDES1204 is a single-output SEPIC converter reference design developed using the MAX16990 controller. This reference design is rated to operate over a wide input voltage range from 6V to 18V. The design can deliver an output power of 24W at 12V. It is targeted for automotive applications.
The MAXREFDES1160 is a 5V supplied, 2.75kVRMS, full-duplex and 500kbps isolated RS-485 module using the MAX14853. This reference design demonstrates how to build an isolated RS-485 module with a low-cost transformer to provide isolated power. A transformer from HanRun, the HR600755, is used in this design. The power supply on the reference design is derived from a single 5V source. Connect the design board to a USB port or connect an external supply from VDDA to GNDA to provide 5V power supply on the logic side (A). The integrated push-pull transformer driver and external transformer (TX1) generate an isolated supply for powering the isolated side (B) of the board.
The MAXREFDES1174 is centered around the MAX17501 ultra small, high-efficiency, high-voltage, synchronous stepdown DC-DC converter with integrated MOSFETs. This design provides a -24V output and up to 150mA of load current with an input voltage range of 22V to 30V. Unlike a traditional design, this reference design is configured to work in a buck-boost topology to produce negative output voltage from positive input voltage.
The MAXREFDES1180 is centered around the MAX17501 ultra small, high-efficiency, high-voltage, synchronous stepdown DC-DC converter with integrated MOSFETs. This design provides a -12V output and up to 150mA of load current with an input voltage range of 4.5V to 5.5V. Unlike a traditional design, this reference design is configured to work in an inverting buck-boost topology to produce negative output voltage from positive input voltage.
The MAXREFDES1049 is a DC-DC buck power supply that delivers up to 3.5A at 5V from a 7.5V to 60V supply voltage. It is designed for equipment that needs to pass the electromagnetic interference (EMI) compliance testing.
The MAXREFDES1199 demonstrates how to build a lowcost buck DC-DC converter using the step-down converter MAX17244 for 5V DC output applications from a 12V to 32V input. This reference design delivers up to 2.5A at 5V. This design uses a two-layer board and minimizes component count to reduce cost.
The MAXREFDES1207 is a reference design for wearable application based on a total Maxim® solution which includes the MAX32660, MAX30112, MAX77651B, and MAX40005. This solution demonstrates how a small size, low cost, low power, high accuracy heart-rate (HR) monitor can be easily implemented. This design can monitor heart rate using two green LEDs.
The MAXREFDES1194 is a no-opto flyback DC-DC power supply that delivers five outputs from a 6V to 60V supply voltage. It is designed for equipment that needs multichannel, isolated power supplies with a wide input voltage range. The MAXREFDES1194 employs the no-opto flyback control technique of the MAX17690. This document explains how the MAX17690 peak current-mode PWM converter can be used to generate five isolated outputs from a 6V to 60V input voltage.
The MAXREFDES1218 is an active-clamp forward power supply that delivers up to 4A at 24V from a 18V to 36V supply voltage. It is designed for industrial equipment that needs high power isolated power supply. The typical application of the MAXREFDES1218 is an IO-Link® application that needs a 24V isolated voltage from an industrial 24V supply voltage.
The MAXREFDES174# is an IO-Link®-compliant, distance sensor reference design that uses the Maxim MAX22513 IO-Link device transceiver and supports the IQ2 Development IO-Link stack.
The MAXREFDES173# IO-Link® temperature sensor uses the MAX14827A IO-Link device transceiver and supports the IQ2 Development™ IO-Link stack.
This document details the MAXREFDES120# subsystem reference design, a 17V to 36V input, 5V output, no-opto flyback isolated power supply capable of 12.5W. Design files and test results are included. Hardware is available for purchase.
Power over Ethernet (PoE) is a technology that allows network cables to deliver power to a powered device (PD) through power-sourcing equipment (PSE) or midspan, and has many advantages over traditional methods of delivering power.
The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators. The MAX17595 offers optimized input thresholds for universal input AC-DC converters and telecom DC-DC (36V to 72V input range) power supplies.
MAXREFDES130# is an Arduino® form-factor shield compatible with ARM® mbed™ and Arduino platforms providing a complete reference for prototyping your next building automation design. This design includes eight 0VDC-10VDC analog outputs, one 4mA-20mA output, one 4mA-20mA input, eight nonlatching relays, three latching relays, an RTC, and 1-Wire® master. The MAXREFDES130# works well with one or more of the MAXREFDES131#, the 1-Wire®, Grid EYE® sensor, to make a complete building automation solution.
The MAXREFDES165# is a fully IO-Link®-compliant, 4-port IO-Link master reference design. This design uses TMG TE’s IO-Link master stack and is both an IO-Link master reference design as well as an IO-Link sensor/actuator development and test system. Four IO-Link ports allow for simultaneous testing of up to four different sensors (or actuators).
This document details the MAXREFDES119# subsystem reference design, a 17V to 36V input, 5V output, no-opto flyback isolated power supply capable of 9W. Design files and test results are included. Hardware is available for purchase.
The MAXREFDES96# is an Arduino Uno R3-compatible board that provides battery charge, boost, and data-logging capabilities. The board can be operated tethered to a power supply or computer to charge a battery and operate untethered to use the battery to power the Arduino board. An SD card interface is provided to enable data logging up to 32GB of data. Status and battery state of charge (SOC) is displayed on three LEDs. An Arduino-compatible display can be added for more detailed data display.
Supercapacitors, by their very name, provide unique benefits in modern electronics.