The TIDA-00399 design implements a complete power supply solution for SSDs in an M.2 form factor. The TPS22954 load switch is used to limit inrush current, eliminating the need for a separate monitoring circuit at the system input. This design has been tested and includes GUI, demo and user guide.
This design is a complete system for controlling a single extruder based 3-axis 3D printer. The system is managed by the MSP430F5529 LaunchPad and utilizes the DRV8846 for precision stepper motor control. The CSD18534Q5A is used as a low-side switch for warm bed heaters, extruder heaters, and cooling fans. The DRV5033 Hall sensor acts as a non-contact limit switch.
This reference design is a power stage for brushless motors in battery-powered garden tools and power tools rated up to 1 kW, powered by a 10-cell lithium-ion battery with a voltage range of 36 to 42 V. This design uses 60V N-channel NexFET(TM) with ultra-low drain-to-source resistance (RDS_ON) of 1.8 mΩ in a SON5x6 SMD package, resulting in a small 57 × 59 mm PCB footprint. This design uses a three-phase gate driver to drive the three-phase MOSFET bridge, which can operate from 6V to 60V and supports programmable gate current with a maximum setting of 2.3A sink/1.7A source. The C2000™ Piccolo™ LaunchPad™ LAUNCHXL-F28027 is used with this power stage and implements 120-degree trapezoidal control of BLDC motors via Hall sensors in software. The gate driver's cycle-by-cycle current limiting feature limits the maximum current allowed in this power stage to a safe level, thereby protecting the board from overcurrent issues caused during motor shutdown.
This TI design provides a reference solution for measuring insulation resistance up to 100MΩ. The design features an on-board isolated 500Vdc power supply and isolated signal conditioning circuitry for measuring leakage current. This design is useful for finding leaks due to insulation breakdown in transformers and motor windings.
TIDA-00447 is a 24V, dual brushless DC (BLDC) motor drive reference design that can be used to drive circulating water pumps and drain pumps in dishwashers. The circulating water pump and drainage pump drive stages are designed for continuous operation of 100W and 30W respectively. The drain pump driver is based on a single-chip, low external component count three-phase motor driver with integrated power MOSFETs and provides a proprietary sensorless control scheme enabling continuous sine wave drive. In addition, it features an integrated buck/linear regulator that efficiently reduces the supply voltage to 5V or 3.3V to power internal and external circuitry. The circulating water pump is implemented using a discrete solution with MCU, external MOSFET driver with protection mechanism and current sensing function, and external power MOSFET. This architecture allows the flexibility to adjust drive power levels as needed. The MCU is programmed through the InstaSPIN-BLDC software, which enables sensorless trapezoidal control of the BLDC motor using an anti-EMF integration approach, and can also be used to configure and control the speed of the drainage pump stage. A separate UART interface allows the drive unit to communicate with the main user interface controller. This reference design has been fully tested with current and motor stop protection mechanisms operating at full load.
The FDC2214 proximity and capacitive sensing design demonstrates how to use TI's capacitive sensing technology to sense and detect the presence of various objects. This design is a complete hardware and firmware solution. The firmware processes data from a proximity sensor and two capacitive touch buttons via the FDC2214 to determine whether an object is within the target sensing area. A dedicated colored LED lights up whenever the device detects an object in close proximity to the board or detects a button press. This design is powered by one AA battery.
The TIDA-00486 TI design uses Texas Instruments' SimpleLink Wi-Fi CC3200 on-chip Internet wireless MCU module to create a data bridge between an RS-485 network and a Wi-Fi network. The ISO15 transceiver provides an isolated RS-485 interface with electrical isolation up to 2500 VRMS. The LM5160 Fly-Buck™ power supply provides both isolated and non-isolated 3.3V outputs for both parts of the circuit. This design can be powered by AC or DC supplies up to 30VRMS or 48V peak. A version of this design with a non-isolated RS-485 interface is included in TIDA-00485.
The unique inductive sensing capabilities of the LDC1314 are used to implement a contactless rotational position sensing solution accurate to 1 degree. It uses standard PCB technology and simply manufactured components to achieve a low-cost solution.
TIDA-00524 provides a complete reference design for asset tracking and cold chain data logging, with over 5 years of battery life and a simple NFC (Near Field Communication) interface for configuration and readback. For maximum flexibility, the system offers multiple sensor configuration options to monitor temperature (TMP112), ambient light (OPT3001) and/or humidity (HDC1000/HDC1010). TI's RF430CL331H can provide NFC, and the MSP430FR5969 MCU can provide up to 64KB of non-volatile FRAM storage.
This solution is designed to create a size-optimized integrated power design for ADAS applications using the TDA3x SoC (no automotive battery input required). By targeting only applications that require lower processing performance, we can select smaller devices and components than systems with higher performance processors.
TIDA-00556 is a low-power, space-saving "transport mode" solution targeted at wearable devices and other small portable electronics that can be implemented using simple, low-cost load switches.
The main purpose of TIDA-00600 is to provide a cost-optimized small power management solution for ZigBee systems that require both rechargeable battery and DC connector power. The TIDA-00600 design provides power management departments with test data, design guidance, and light drawing files. This reference design features the LP5907, an ultra-small LDO with high PSRR and low noise, and the BQ24230, a stand-alone battery charger.
The TIDA-00601 design uses isolated shunt sensors to implement a Class 0.5% three-phase energy metering system. Isolation is achieved by using an isolated Delta-Sigma modulator with a capacitively isolated output circuit. The energy metering SoC takes different bit streams from the isolated modulator and uses its onboard digital filter to generate ADC sample readings. The energy metering SoC is also used to sense voltages, calculate metering parameter values, drive the board LCD, and communicate with the PC GUI via the board's isolated RS-232 circuitry.
This TI reference design combines a Texas Instruments (TI) low-voltage H-bridge motor driver with an integrated LDO voltage regulator and an ultra-low-power microcontroller (MCU) to demonstrate a comprehensive implementation of a battery-powered electric toothbrush. .
Brushed motors are a relatively popular motor design option due to their low price and simple control scheme. A brushed motor has a wound rotor and a permanent magnet stator. The motor is commutated via a conductive ring: this ring is connected to the rotor, which uses a brush to scrape against the commutator ring, thus commutation is achieved. Therefore, the direction of current flowing through the motor can change depending on the brush orientation and different commutation rings. Simple direction changes and speed control changes can be quickly and efficiently implemented on brushed DC motors using an H-bridge. An electronic driver is required to control the motor current in a brushed DC motor. The electronic drive circuit contains a power stage with a two-phase inverter (to meet the required power intensity), a microcontroller for implementing motor speed commands and fault handling, a current sensing function for motor start/stop protection, for control Gate drivers for two-phase inverters and power supplies for microcontrollers and other low-voltage devices.
The TIDA-00643 reference design is a 4.4 to 30 V brushless DC motor controller for high power propeller, fan and pump applications. It uses Texas Instruments' DRV8305 brushless DC motor gate driver, CSD17573Q5B 30V NexFET power MOSFET, TPD4E05U06 TVS protection integrated circuit, C2000 motor control MCU, and LMR16006 3.3 V buck converter. It uses InstaSPINTM-FOC for sensorless magnetic field positioning control and controls motor speed via an external reference signal from a central controller. The design aims to create an efficient and high-power BLDC motor system.
This design is a sensored three-phase brushless DC motor controller that uses a single PWM input to control speed and three active-high Hall sensors to detect rotor position. The DRV8305's integrated communication table simplifies the microcontroller firmware required for correct commutation. The DRV8305 automatically handles dead time insertion and gate drive current control, both of which are adjustable through the driver SPI interface.
To meet energy efficiency requirements, ceiling fans and ventilation fans will move from simple AC induction motors to brushless DC motors (BLDC). BLDC motors require AC-DC conversion with high efficiency and high power factor when operating on AC power. It also requires the use of highly efficient controlled inverters for low-noise operation. Reference design TIDA-00652 uses a single-stage power supply to convert an AC power input to a low-voltage DC output, helping meet the challenges of higher efficiency and power factor in a simpler way. It also incorporates a fully integrated and properly protected single-chip sensorless sinusoidal brushless motor controller for low-noise operation.
TIDA-00653 is a non-isolated 48 to 12V bidirectional converter reference design for 48V battery applications supported by the UCD3138 digital power controller. The design is flexible and can operate in a ZVS switching mode topology to optimize light-load efficiency, or in a hard-switching topology for simple system design. The bidirectional converter uses automatic phase shedding and offset technology for light loads and uses adaptive dead-band optimization to achieve greater than 96% compound efficiency gain. Because efficiency is greatly improved, heat losses are reduced, eliminating the need for air or liquid cooling in automotive applications. In addition, using the UCD3138 high control frequency controller and hardware-based state machine allows for miniaturization and frees up the system CPU for other functions such as battery management.
TIDA-00675 reduces power consumption by using load switches to dynamically turn loads on/off. The design guide explains how switching frequency, duty cycle, and the use of discharge resistors affect power dissipation.