TIDA-00891 is designed to evaluate the HD3SS3220 device for UFP implementation. This reference design also serves as a hardware reference design for any implementation using the HD3SS3220 with a USB-C™ connector. Reference design files are available upon request to assist in PCB design using the HD3SS3220. This design provides layout files to guide you through the routing/location rules schematic to implement the TUSB321A. This reference design provides an onboard USB Type-A plug to connect to legacy USB systems. Please note that this reference design may contain test components that are intended for evaluation and are not suitable for production.
The MAXREFDES1150 is Maxim's smart pill bottle design for medical and broad IoT applications.
This reference design is a BeagleBone Black add-on board that allows users to explore TI's powerful Programmable Real-Time Unit (PRU) core and basic functionality. The PRU is a low-latency microcontroller subsystem integrated into Sitara's AM335x and AM437x family of devices. The PRU core is optimized for deterministic real-time processing, with direct access to I/O and ultra-low latency requirements. Featuring LEDs and buttons for GPIO, audio, temperature sensors, optional character display, and more, this add-on board provides schematics, bill of materials (BOM), design files, and design guides to allow designers to learn the basics of the PRU.
Li-Ion battery formation and electrical testing require accurate voltage and current control, usually to better than ±0.05% over the specified temperature range. This reference design proposes a solution for high-current (up to 50 A) battery tester applications supporting input (bus) voltages from 8 V–16 V and output load (battery) voltages from 0V–5V. The design utilizes an integrated multi-phase bidirectional controller, LM5170, combined with a high precisiondata converters and instrumentation amplifiers to achieve charge and discharge accuracies of 0.01% full scale. To maximize battery capacity and minimize battery formation time, the design uses highly-accurate constant current (CC) and constant voltage (CV) calibration loops with a simplified interface. All key design theories are described guiding users through the part selection process and optimization. Finally, schematic, board layout, hardware testing, and results are also presented.
The MAXREFDES1154 is a configurable 4-channel RTD/TC measurement system.
The MAXREFDES1043 is designed for SpO2 measurements based on Maxim’s new-generation biosensor—the MAX30102.
TIDA-00524 provides a complete reference design for asset tracking and cold chain data logging, with over 5 years of battery life and a simple NFC (Near Field Communication) interface for configuration and readback. For maximum flexibility, the system offers multiple sensor configuration options to monitor temperature (TMP112), ambient light (OPT3001) and/or humidity (HDC1000/HDC1010). TI's RF430CL331H can provide NFC, and the MSP430FR5969 MCU can provide up to 64KB of non-volatile FRAM storage.
The TIDA-00821 reference design is a stackable monitor and protector for use in large lithium-ion batteries that provides monitoring, balancing and communication functions. Each bq76PL536A-Q1 EVM can manage 3 to 6 cells in Li-ion battery applications. Up to 32 bq76PL536A-Q1 EVM modules can be stacked. The system provides fast cell balancing, diagnostic capabilities, and module-to-controller communication. In addition, an independent
protection circuit is integrated.
2.75 W non-isolated buck converter for home and building automation using LinkSwitch-TN2 (LNK3207D)
MAXREFDES89# is an mbed®-compatible shield for the rapid development of brushed DC motor applications. The shield contains four MAX14871 full-bridge DC motor drivers for driving up to 4 motors. A MAX17501 DC-DC converter allows the system to operate from a single 7 to 36VDC power supply. Four MAX4704 4:1 multiplexers permit setting the current regulation mode of the MAX14871, while two MAX5387 digital potentiometers provide the ability to set the motor current limit. A MAX7300 GPIO expander supports interfacing each motor driver circuit to the mbed enabled microcontroller platform.
The QC4.0/4.0+ 18W Mobile Charger enables the design of power supplies featuring low standby power with the output voltage in full regulation, very high-efficiency and high-reliability. The NXP® chipset used is targeting mobile and notebook power supplies with power requirements up to 100W. Supplies can be designed easily and with a minimum number of external components.
BabyCareAssistant is a children's toy "black box" based on SensorTile.box. It can be used to dynamically display motion data, real environment data, assist in monitoring children's activities, cries, etc.
This TI precision verification design circuit converts the differential current output of an audio DAC into a single-ended voltage that can drive low-impedance headphones. This design achieves the high-fidelity performance levels currently being promoted in cell phones and mobile audio players.
This TI design provides a reference solution for measuring insulation resistance up to 100MΩ. The design features an on-board isolated 500Vdc power supply and isolated signal conditioning circuitry for measuring leakage current. This design is useful for finding leaks due to insulation breakdown in transformers and motor windings.
The TIDA-00262 reference design is a high-speed serial video interface that allows remote automotive camera modules to be connected to a display or machine vision processing system. This design uses TI's FPD-Link III SerDes technology to transmit uncompressed megapixel video data, bidirectional control signals and power over shielded twisted pair or coaxial cable.
Freedom Sensor Shield expansion board for MMA8491. Compatible with FRDM development boards, sensor toolbox and ISF
This document details the MAXREFDES98# subsystem reference design, a 36V to 57V input, 5V output, step down, non-isolated power supply capable of 12.5W. Design files and test results are included. Hardware is available for purchase.
This design is a sensored three-phase brushless DC motor controller that uses a single PWM input to control speed and three active-high Hall sensors to detect rotor position. The DRV8305's integrated communication table simplifies the microcontroller firmware required for correct commutation. The DRV8305 automatically handles dead time insertion and gate drive current control, both of which are adjustable through the driver SPI interface.