The TIDA-01494 reference design is a compact, high-efficiency, 24V DC, 480W nominal, 720W peak output reference design for industrial AC/DC power supplies. The circuit includes a front-end continuous conduction mode (CCM) power factor correction (PFC) circuit, followed by a powerful LLC stage with synchronous rectification. The design ensures an efficiency greater than 93.5% over a wide load range, allowing the system to operate without forced cooling. The UCC256301-based LLC stage utilizes the ZCS avoidance feature in the UC256301 to achieve peak output power, minimizing the PFC bulk capacitor to meet holdup requirements while enabling the system to handle short circuit and overcurrent conditions. The UCC24612-2-based synchronous rectifier helps minimize losses in the output rectifier, while its advanced proportional gate driver and dead-time optimization help avoid breakdown and minimize losses.
This reference design is a high power PoE Powered Device (PD) plus active clamp forward converter. The TPS2373 high power PD controller EVM (TPS2373-4EVM-758) provides all functions necessary to implement an IEEE802.3bt-ready PD. This is paired up with an active clamp forward converter utilizing the UCC2897A controller. The high efficiency 24V/3A output using synchronous rectifiers is ideally suited for high power PoE applications such as IP security cameras and LED lighting applications.
In need of an IEEE802.3bt-ready PSE controller? Check out the TPS23881.
This reference design is a battery initialization reference design solution for automotive and battery applications. The module enables a high efficiency single stage conversion for charging and discharging the battery. This design features a 0.1% accurate current control loop using the high performance INA225 current sense amplifier. The design was achieved in a compact form factor (40mmX143mmX20mm).
This reference design uses the MSP430FR4133 FRAM-based MCU and is a remotely controlled, full-featured, battery-powered magnetic pulse water meter with wired and wireless automatic meter reading (AMR) capabilities. The instantaneous flow rate and total flow rate will be displayed on the LCD screen. The design operates in a low-power mode and reduces CPU workload, thereby helping to reduce overall power consumption.
This reference design uses the TPS61088 to provide an envelope tracking power supply circuit for an audio power amplifier (PA). By adding the audio envelope signal to the FB pin, the output voltage of the TPS61088 can be varied according to the envelope of the audio signal. Therefore TPS61088 can provide dynamically changing power supply voltage to the PA. As a result, the PA maintains high efficiency over the entire output power range.
The TIDA-00821 reference design is a stackable monitor and protector for use in large lithium-ion batteries that provides monitoring, balancing and communication functions. Each bq76PL536A-Q1 EVM can manage 3 to 6 cells in Li-ion battery applications. Up to 32 bq76PL536A-Q1 EVM modules can be stacked. The system provides fast cell balancing, diagnostic capabilities, and module-to-controller communication. In addition, an independent
protection circuit is integrated.
The FRDM-GD3000EVB is an easy-to-use board that allows users to practice all functions of the MC34GD3000 pre-driver.
TI's TIDA-00318 is designed for low-power wearable devices, including a Qi-compliant wireless receiver (bq51003) and an ultra-low current single-cell Li-ion linear battery charger (bq25100). Its features are: ultra-small size (5x15mm2), supports charging current between 10mA~250mA and a minimum terminal current of 1mA.
The current design is suitable for 135mA charging current.
This proven design accurately measures current, voltage, and power on a bus carrying -48V and provides the data using an I²C-compatible interface. This design is suitable for telecom applications since most common telecom equipment is powered by this negative supply voltage. It uses INA226 and ISO1541. The INA226 is a current shunt/power monitor with an I²C compatible interface. The device will accurately process these measurements and convert the negative voltage to a ground reference signal using ISO1541. The ISO1541 is a low power bidirectional I²C compatible isolator.
The MAXREFDES1194 is a no-opto flyback DC-DC power supply that delivers five outputs from a 6V to 60V supply voltage. It is designed for equipment that needs multichannel, isolated power supplies with a wide input voltage range. The MAXREFDES1194 employs the no-opto flyback control technique of the MAX17690. This document explains how the MAX17690 peak current-mode PWM converter can be used to generate five isolated outputs from a 6V to 60V input voltage.
This reference design helps designers develop an ultrasonic water-metering subsystem using an integrated, ultrasonic sensing solution (USS) module, which provides superior metrology performance with low-power consumption and maximum integration. The design is based on the 256KB MSP430FR6047 microcontroller (MCU), with integrated high-speed, ADC-based, signal acquisition and an integrated low energy accelerator (LEA) to optimize digital signal processing.
The MAXREFDES1153 is a monitoring solution for genuine lithium-ion (Li+) battery packs with 2 to 15 cells connected in series. This reference design provides an accurate state of charge (SOC) in milliamp-hours (mAh) or percentage (%), as well as precision measurements of current, voltage, and temperature for multicell battery packs.
This reference design demonstrates how to implement a capacitive touch button, commonly used as a setting button in a proximity switch, in an ultra-small 3.5mm wide PCB based on TI's CapTIvate™ technology. When combined with the highly integrated IO-Link PHY, flexible PNP or NPN outputs are possible. The SIO stage provides reverse polarity, ESD, EFT and surge protection, making the design compliant with IEC 61000-4 standards. Hall sensors with analog output signals enable flexible use by teaching the distance to magnetic objects via a capacitive teach button. This analog signal is captured by the MCU's integrated ADC.
This TI reference design is for an automotive high-side dimmable taillight that uses a BCM to provide the taillight. In this TI reference design, the high-side driver TPS1H100-Q1 is used to output PWM power with different duty cycles. Linear LED drivers TPS92630-Q1 and TPS92638-Q1 are used to drive LEDs with constant current.