Multifunctional CNC power supply design based on STM32 (schematic diagram, PCB, program source code, etc.).
You can use the Bluetooth and MSP430 audio source reference designs to create a variety of applications for low-end, low-power audio solutions, including toys, projectors, smart remote controls, and a variety of audio playback accessories. This reference design is an affordable audio implementation with complete design files, allowing you to focus on application and end product development. This reference design is also available with the TI Bluetooth Stack.
The Vienna rectifier power topology is used in high power three-phase power factor (AC-DC) applications such as off-board EV chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller (MCU) to control a power stage. Monitoring and control of Vienna rectifiers is also implemented based on HTTP GUI pages and Ethernet support (F2838x only). The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C2000 microcontroller to control a Vienna rectifier. The Vienna rectifier power topology is used in high power three-phase power factor (AC/DC) applications such as off-board electric vehicle (EV) chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller to control a power stage. The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C200-MCU to control a Vienna rectifier. Learn more about what C2000 MCUs can offer for electric vehicle applications
This reference design implements Class 0.1 split-phase energy metering using a high-performance, multi-channel analog-to-digital converter (ADC). An independent ADC samples the current transformer (CT) output at 8kHz and measures the current and voltage at each branch of the main AC power supply. The reference design achieves high accuracy over a wide input current range (0.05 – 100 amps) and supports high sampling frequencies when necessary to enable advanced power quality features such as independent harmonic analysis. Using a stand-alone ADC to sample the CT output gives designers more flexibility in selecting a metrology microcontroller than an integrated SoC and application-specific dedicated products. This reference design uses the SimpleLink™ ARM Cortex-M4 host microcontroller to calculate energy metering parameters. The design can also use an ADC sampling rate of 32ksps by enabling only a subset of the total energy measurement parameters.
The STDES-7KWOBC is an on-board charger (OBC) reference design which allows charging the battery of electric vehicles (EV) through your home AC mains plug or a private/public outlet (AC charging station)
.
TIDA-00281 TI reference design is a three-phase brushless DC motor driver for 48V automotive applications. The board is designed to drive motors in the 1kW range and can handle currents up to 30A. This design uses analog circuitry used with the C2000 LaunchPad to rotate a three-phase BLDC motor without position feedback from Hall effect sensors or quadrature encoders.
Special driver for fish machines, with totem variable drive
This intelligent atmospheric environment and corrosive monitoring platform integrates hardware, software, and network. With the stable performance IACM-321 platform system as the core, it realizes multi-level dynamic networking and remote status monitoring. It can be monitored in the monitoring/operation and maintenance center. The front-end system provides centralized monitoring and unified management, and uses customized intelligent terminals to achieve mobile monitoring. Convenient Click connect sensor interface, easy to install on smart terminals.
The MAXREFDES48# reference design is a high-efficiency, high-precision, isolated DC-DC forward converter with an active clamp, current-mode PWM controller. The converter accepts 18V to 36V DC input and delivers output current up to 3.5A at 12V . Test results and hardware files provide complete documentation for the design. The board is also available for purchase.
TIDA-00827 is an integrated sensor-based BLDC motor controller reference design for low-power, battery-powered brushless DC motor applications. The 8 to 35V operating voltage range supports 3S to 6S lithium polymer battery power supplies. Specific applications include camera heads, low-power fans and robots. The motor controller consists of the MSP430G2353 16-bit, ultra-low power microcontroller and the DRV8313 highly integrated 2.5A triple half-bridge driver. The MSP430G2353 utilizes Hall sensor-based communication feedback to provide the correct drive voltage to the motor through the DRV8313. Onboard potentiometers and buttons provide a simple interface to control the motor.
With this design, users of the OV788 ultra-low-power video compression chip can easily implement real-time streaming of audio and video data over Wi-Fi®. It demonstrates a single-chip implementation on the SimpleLink™ CC3200 Wi-Fi wireless microcontroller that supports RTP video streaming and Wi-Fi connectivity via 802.11 b/g/n from any smartphone, tablet or computer on the local network network for data transmission. This design implementation takes advantage of the CC3200 Internet-on-a-chip™ solution's ease of debugging to Wi-Fi networks and advanced low-power modes, making it ideal for a variety of Internet of Things (IoT) applications, such as battery-powered in smart homes. Intrusion cameras, door locks, video doorbells and 360 multi-camera.
The PMP10733 uses the LM5160 in a Fly-Buck-Boost topology with the primary side set to a negative voltage. Setting the primary side to a negative voltage reduces the turns ratio of the transformer and therefore allows for better line and load regulation. The primary and secondary voltages are set to negative 15V and positive 15V respectively. The maximum operating current on the primary and secondary voltage rails is set to 150mA. The switching frequency is set to 200kHz.