• 22W MP-A11 Fixed Frequency Transmitter Reference Design

    22W MP-A11 single coil wireless charger

  • High-bandwidth optical front-end reference design

    This reference design implements and measures a complete 120MHz high-bandwidth optical front-end consisting of a high-speed transimpedance amplifier, a fully differential amplifier, and a high-speed 14-bit 160MSPS ADC with JESD204B interface. The design provides hardware and software to evaluate the system's response to high-speed optical pulses generated by the included laser driver and diode, suitable for applications with optical time domain reflectometry (OTDR).

    Schematic PCB

  • High-accuracy ±0.5% current and isolated voltage measurement reference design using 24-bit delta-sigma ADC

    This analog front end (AFE) design shows how to connect two or more Σ-Δ ADCs for simultaneous sampling and how to expand the number of input channels to provide maximum flexibility. Precision current measurement is achieved by connecting the AFE to a current transformer (CT) and a Rogowski coil. Likewise, accurate voltage measurements are achieved using resistive voltage dividers without and with isolation amplifiers. The AFE can be configured to measure unipolar or bipolar inputs. The required power is provided onboard. Additionally, diagnostics can be integrated into one design, as shown in TIDA-00810.

    Schematic PCB

  • Layout Considerations for MAX16974/MAX16975/MAX16976 DC-DC Converters

    The MAX16974/MAX16975/MAX16976 high-performance DC-DC converters are standard buck controllers designed for automotive applications. This application note explains how to optimize the layout of these ICs. An example layout is provided at the end of the document.

  • CN0169

    How to use the 16-bit voltage output DAC AD5542A/AD5541A to achieve high-precision level setting

    Schematic PCB

  • Vienna Rectifier-Based Three Phase Power Factor Correction Reference Design Using C2000 MCU

    Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off board EV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers (MCUs). It also enables monitoring and control of Vienna rectifier based on the HTTP GUI page and Ethernet support(F2838x only).The hardware and software available with this design helps accelerate your time to market.Vienna rectifier power topology is used in high power three phase power factor correction applications such as off board Electric Vehicle Charging and telecom rectifiers. This design illustrates how to control a vienns rectifier using C2000 Microcontroller. Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off-board electric vehicleEV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers. The hardware and software available with this design helps accelerate your time to market.The Vienna rectifier power topology is used in high power three phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to control a Vienna rectifier using C200-MCU. 

    Schematic PCB

  • Car Emergency Call (eCall) Audio System Reference Design

    The efficiency and diagnostic capabilities required for automotive emergency call (eCall) systems create unique requirements for the audio subsystem, such as speaker diagnostics and low power consumption. This TI reference design shows how TI's automotive dual-channel audio codec (TLV320AIC3104-Q1) and Class D audio amplifier (TAS5411-Q1) can be used in eCall applications.

    Schematic PCB

  • Loop-powered 4mA to 20mA RTD Temperature Transmitter Reference Design with MSP430 Smart Analog Combo

    This TI reference design provides a low-component-count, low-cost solution for a 4 to 20mA loop-powered resistance temperature detector (RTD) temperature transmitter. The design utilizes the on-chip smart analog combination module in the MSP430FR2355 MCU to control the loop current, thus eliminating the need for a separate DAC. The design achieves 12-bit output resolution and 6µA output current resolution. The design incorporates reverse polarity protection as well as IEC61000-4-2 and IEC61000-4-4 protection on the loop power input.

    Schematic PCB

  • FRDM-MC12XSF: Freedom HW for MC12XSF and MC12XS6 series

    This freedom board covers MC12XSF and MC12XS6 families and ease its usage thanks to its quick evaluation tolls (Spigen or KDS) with different Kinetis MCU.

    Schematic PCB

  • Automotive dual-channel SiC MOSFET gate driver reference design with two-level shutdown protection

    This reference design is an automotive-qualified isolated gate driver solution that drives silicon carbide (SiC) MOSFETs in a half-bridge configuration. This design provides two push-pull bias supplies for dual-channel isolated gate drivers, each providing +15V and –4V output voltages and 1W output power. The gate driver is capable of 4A peak source current and 6A peak sink current. The driver implements reinforced isolation and can withstand 8kV peak isolation voltage and 5.7kV RMS isolation voltage as well as common-mode transient immunity (CMTI) of over 100V/ns. This reference design includes a two-stage shutdown circuit that protects the MOSFET against voltage overshoot during short circuit conditions. DESAT detection threshold and second stage shutdown delay time are configurable. This design uses an ISO7721-Q1 digital isolator to connect the fault and reset signals. The overall design adopts a compact double-layer PCB board of 40mm × 40mm.

    Schematic PCB

  • 1kW Full-Bridge DC-DC Converter

    This reference design provides design guidelines, data, and more for a 1kW server power supply using a phase-shifted full-bridge DC-DC converter.

    Schematic PCB

  • 12V and 24V brushless DC external rotary motor reference design

    This 6cm motor is packaged and ready; connect to power and run! The simple and reliable design is easily modified to support speed and current system needs. The DRV5013 Hall-effect sensor senses the magnetic rotor position, and the DRV8307 controller determines when to drive the CSD88537ND FET that energizes the coil .

    Schematic PCB

  • Designing a buck-boost LED driver using the MAX16834

    This reference design is for a buck-boost LED driver. The MAX16834 current-mode high-brightness LED driver is featured, and the MAX16834 EV (evaluation) kit is used to implement the design. The application note shows the design specifications, schematic, bill of materials (BOM), and performance data.

  • Acontis EtherCAT Master Protocol Stack Reference Design

    The Acontis EC-Master EtherCAT Master stack is a highly portable software stack that can be used on a variety of embedded platforms. EC-Master supports high-performance TI Sitara MPUs and provides an advanced EtherCAT Master solution that customers can use to implement EtherCAT communication interface boards, EtherCAT-based PLCs or motion control applications. The EC-Master architecture is designed so that users do not need to plan additional tasks, so the full stack functionality is available even on platforms without an operating system (such as TI Starterware supported on AM335x). This architecture combined with high-speed Ethernet drivers allows users to implement EtherCAT master on the Sitara platform with very short cycle times of 100 microseconds or less.

    Schematic PCB

  • 15-Cell Li-Ion Battery Controller Analog Front-End Reference Design

    The TIDA00255 reference design utilizes the bq76940 analog front end (AFE) IC. It can measure battery voltage, mold temperature or external thermistor voltage using a 14-bit ADC. Current is measured individually by a separate 16-bit coulomb counter. The design turns off the low-side power FET to stop discharging or charging based on selected hardware limits. A microcontroller not included in this design will be part of the battery controller to communicate with the AFE to set protection thresholds, enable the power FETs, provide fault recovery, and shut down the FETs during over/under temperature conditions. Battery controller designs may include additional features that are not part of this reference design, such as secondary overvoltage protection, measurement, and isolated communications to inform the system of battery status.

    Schematic PCB

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号