• Circular Microphone Board (CMB) Reference Design Based on PCM1864

    The PCM1864 circular microphone board (CMB) is a low-cost easy-to-use reference design for applications that require clear-spoken audio, such as voice triggering and speech recognition. This TI Design uses a microphone array to capture a voice signal, and converts it to a digital stream that can be used by DSP systems to extract clear audio from noisy environments.

    Schematic PCB

  • Low-voltage, low-noise power supply reference design for ultrasound front-ends

    This reference design is a power supply optimized specifically for powering eight 16-channel receive AFE ICs in ultrasound imaging systems. This design uses a single-chip DC/DC converter + LDO combo regulator to set each LDO input just above the dropout voltage while fully utilizing the LDO PSRR, thereby reducing parts count while maximizing efficiency. In addition, ultra-low noise LDOs help achieve the highest possible analog-to-digital conversion resolution, resulting in higher image quality. The design's ability to synchronize the switching frequency with the master clock frequency and the system clock frequency allows system designers to apply simple filtering techniques to eliminate power switching noise on ground loops or use spread spectrum clocking to reduce EMI. Additionally, the design implements an electronic fuse device, providing a simple and flexible method of overcurrent protection.

    Schematic PCB

  • Automotive discrete SBC pre-boost, post-buck reference design using CAN

    The TIDA-01429 reference design uses a wide input voltage boost controller followed by a wide input voltage buck converter set to 5.0V. A 5.0V supply is used to power the controller area network (CAN) transceiver, and a compact 3.3V fixed-voltage linear dropout (LDO) regulator is used to power the C2000 microcontroller. This design has been tested for CISPR 25 radiated emissions according to the anechoic chamber (ALSE) method, CISPR 25 conducted emissions using the voltage method, and Bulk Current Injection (BCI) resistance according to ISO 11452-4, all tested at CAN communication operates at a speed of 500KBPS. This is an Electromagnetic Compatibility (EMC) tested, 3-level power tree reference design using Controller Area Network (CAN) that can be used in a variety of automotive applications that require operation at input voltages as low as 3.5V. A system basis chip (SBC) is an integrated circuit (IC) that combines several typical building blocks of a system, including transceivers, linear regulators, and switching regulators. While these integrated devices can provide size and cost savings in many applications, integrated devices do not work well in every situation. For applications that are less suitable for using an SBC, a better approach is to build discrete implementations of the above building blocks to create a discrete SBC.

    Schematic PCB

  • People Counting and Tracking Reference Design Using Sub-1GHz Millimeter Wave Radar Sensors

    This reference design demonstrates how to use the IWR6843, a single-chip millimeter wave radar sensor from TI with an integrated DSP, to implement indoor and outdoor people counting applications while enabling sub-1GHz wireless communications. This reference design uses the MMWAVEICBOOST and IWR6843ISK evaluation modules (EVMs) and the LAUNCHXL-CC1352R1 wireless MCU LaunchPadTM. The solution is capable of locating people at distances up to 6 meters (close configuration) and 14 meters (long range configuration).

    Schematic PCB

  • 480W, 97% Efficiency Ultra-Compact (480W/in3) Bidirectional DC/DC Reference Design

    The TIDA-00705 is an ultra-compact (1”x1”x1”) high-efficiency bidirectional DC to DC power converter capable of delivering 480W for low energy storage (LES) and battery backup power applications. Specifically, it is designed for server battery backup Unit (BBU) embedded server PSU. The reference design is based on a two-phase spaced half-bridge power stage controlled using the UCD3138 digital power stage controller. The design has built-in DC bus overcurrent, overvoltage protection and battery overcurrent, overvoltage protection. Voltage protection and phase current balancing to dissipate heat.

    Schematic PCB

  • Remote voice control reference design

    The SimpleLink™ Multi-Standard CC2650 Remote Control Reference Design is an all-in-one solution for the development of voice-based Bluetooth® Low Energy, ZigBee® RF4CE™ or multi-standard remote control. This reference design shows the recommended decoupling and RF layout for optimal RF performance. This design uses discrete components for the balun and filter, as well as an inverted F-shaped PCB antenna to provide good performance at low cost.

    Schematic PCB

  • CISPR 25 Category 5 USB Type-C port reference design with USB 3.0 data support

    TIDA-00987 is a reference design for automotive media ports requiring data transmission. This design supports USB 2.0 and USB 3.0 data via the 15W USB Type-C™ port. Customers can accelerate their media port systems by leveraging a complete reference design that includes AEC-Q100 compliant CISPR 25 Category 5 tested analog integrated circuits (ICs). This design creates a reliable and flexible solution that allows the system to charge USB Type-C and legacy devices in a small 1 x 2.5-inch solution.

    Schematic PCB

  • Three-Phase Inverter Reference Design with Optical Analog Input Gate Driver for 200-480VAC Driver

    This reference design implements a reinforced isolated three-phase inverter subsystem using isolated IGBT gate drivers and isolated current/voltage sensors. The UCC23513 gate driver used is available in a 6-pin wide body package and LED light analog input, and can be used as a pin-for-pin replacement for existing optically isolated gate drivers. This design shows that the UCC23513 input stage can be driven using all existing configurations for driving optoisolated gate drivers. In-phase shunt resistor based motor current sensing is implemented using the AMC1300B isolated amplifier and DC link voltage, and IGBT module temperature sensing is implemented using the AMC1311 isolated amplifier. This design uses the C2000™ LaunchPad™ to control the inverter.

    Schematic PCB

  • Reinforced Isolated Phase Current Sensing Reference Design with Small Delta-Sigma Modulator

    This reference design implements a reinforced isolated three-phase inverter subsystem using isolated IGBT gate drivers and isolated current/voltage sensors. This design uses the AMC1306E25 delta-sigma modulator for accurate shunt-based inline motor phase current sensing. The modulator output is Manchester encoded, simplifying clock and data signal routing between the MCU and the modulator. The modulator's high CMTI helps suppress inverter switching noise transients from causing data corruption on the controller side. A compact solution is achieved using a small size modulator. TIDA-00914 provides an interface to an external MCU or FPGA so that a SINC digital filter can be used to demodulate the AMC1306E25 output bit stream. This reference design uses the F28379D Delfino control card, which is connected to the card described in the reference design via an adapter card for current sensing using SINC filters.

    Schematic PCB

  • CISPR25 automotive taillight reference design based on buck + linear LED driver system

    TIDA-00677 TI reference design demonstrates a solution for automotive LED taillight applications (tail/brake lights, turn signals, reverse lights) using the TPS92630-Q1 linear LED driver powered by an upstream buck converter (TPS65321-Q1) scheme, the converter is powered directly by the car battery voltage through the smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. For a similar design powered directly from the car battery, see TIDA-00679, a reference design that is powered directly by the car battery voltage through a smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. See TIDA-00679 for a similar design powered directly from a car battery.

    Schematic PCB

  • Automotive Linear LED Driver Reference Design for Center High Mount Stop Light (CHMSL)

    This reference design details a highly integrated solution for driving CHMSL (including brake and reverse light) LEDs. Each light is capable of operating independently by feeding power to its supply line. The design uses three automotive-qualified linear LED drivers (TPS92610-Q1) to achieve a low BOM count but feature-rich solution. The design also includes protection features to protect against load dump conditions and reverse battery conditions while maintaining a small solution size.

    Schematic PCB

  • Area Scanner Reference Design Using Millimeter Wave Sensors

    The TIDEP-01010 reference design leverages TI single-chip millimeter-wave (mmWave) technology to implement an area scanner capable of detection and localization in 3D space. Using TI 60-GHz mmWave sensors, presence detection, as well as the ability to gauge the object's trajectory and speed, enables dynamic adjustment of the safety zone's size depending on the object's speed of approach, as well as the ability to predict before a safety zone is breached.

    Schematic PCB

  • Wireless earbud battery ultra-low standby power reference design

    New, completely wireless earbuds are charged by the battery inside their carrying case—a unique design that requires small solution sizes and efficient power components. Additionally, the large demands in this market are increasing the need to deliver equivalent functionality more economically. This ultra-low power reference design exhibits a charging case battery and boost converter powered from USB input.

    Schematic PCB

  • Sensorless high-speed FOC reference design for drone ESC

    The ESC module is a very important subsystem in non-military UAVs. Users need more efficient models to achieve longer flight times, better dynamic behavior and smoother and more stable performance. The design uses an electronic speed controller (ESC) commonly used in unmanned aerial vehicles (UAVs) or drones.

    Speed ​​control is done sensorless and the motor was tested using FOC speed control up to 1.2kHz electrical frequency (12kRPM, 6 pole pair motor). Our drone ESC high-speed sensorless FOC reference design features a best-in-class FOC algorithm implementation that enables longer flight times, better dynamic performance, and higher integration resulting in smaller board size and BOM components less. Sensorless high-speed FOC control uses TI's FAST™ software observer, leveraging the InstaSPIN-Motion™ C2000™ LaunchPad and DRV8305 BoosterPack.

    Schematic PCB

  • Linear LED driver reference design for automotive lighting applications

    TIDA-00679 TI reference design demonstrates a solution for automotive LED taillight applications (tail/brake lights, turn signals, reverse lights). This reference design uses the TPS92630 linear LED driver, which is powered directly from the car battery through a smart battery reverse diode. The design offers the potential for cost savings and efficiency through low power dissipation and improved system thermal performance. The reference design also includes CISPR25 testing, pulse testing (per ISO 7637-2), and EMI/EMC radiated and conducted emissions testing. See TIDA-00677 for a similar design using the TPS92630-Q1 driven by a buck converter . See TIDA-00678 for a similar design driven by a boost converter .

    Schematic PCB

  • Non-Isolated Bidirectional Converter Reference Design for Battery Charging Applications

    TIDA-00653 is a non-isolated 48 to 12V bidirectional converter reference design for 48V battery applications supported by the UCD3138 digital power controller. The design is flexible and can operate in a ZVS switching mode topology to optimize light-load efficiency, or in a hard-switching topology for simple system design. The bidirectional converter uses automatic phase shedding and offset technology for light loads and uses adaptive dead-band optimization to achieve greater than 96% compound efficiency gain. Because efficiency is greatly improved, heat losses are reduced, eliminating the need for air or liquid cooling in automotive applications. In addition, using the UCD3138 high control frequency controller and hardware-based state machine allows for miniaturization and frees up the system CPU for other functions such as battery management.

    Schematic PCB

  • Single-cell Li-ion/Li-polymer battery protection IC reference design

    The bq297xy device provides protection for Li-ion/Li-polymer batteries and monitors across external power FETs to provide protection against high charge or discharge currents. Additionally, there is monitoring and protection against overcharging and depleted batteries. These features are achieved with very low current consumption when operating in normal mode.

    Schematic PCB

  • IoT node reference design using high-performance MCU and supporting WIFI function

    System example showing how to build a WIFI node by integrating the TM4C1294 MCU and CC3100 network processor from the TM4C product family. This reference example demonstrates the function of remotely controlling the operating status of an MCU through the Internet.

    Schematic PCB

  • 5V-40V input voltage boost converter (50V@1A) reference design

    This 50V/1A boost converter is designed to operate from a nominal 12V input voltage, but will operate in the automotive range of 5V - 40V. This design is low cost and requires only an area of ​​50mm x 50mm.

    Schematic PCB

  • Single layer 180° sinusoidal 24V/2A sensorless BLDC driver reference design for electrical appliances

    This single-layer reference design for pedestal fans and other similar appliances features 2-inch diameter pads and an integrated controller that reduces component count. In addition, sensorless control eliminates the need for Hall sensors and provides multiple protection functions such as overcurrent protection, undervoltage lockout, and overheating protection, each of which improves the robustness of the design. This reference design is suitable for 8V-24V input voltage and is capable of delivering 3A (peak)/2A (rms) phase current.

    Schematic PCB

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号