This article presents a reference design for a PC-based oscilloscope. The MAX1393 ADC and MAX1396 EV (evaluation) kit are featured. Schematics, software, and explanation of software functions are all provided.
This application note is a reference design for a PC-based temperature measurement system. It uses the MAX1396 and MAX6603EVKITs, a MAXQ2000 microcontroller, and MAX6603 signal conditioner. The design presents an easy way to obtain the temperature readings from the MAX6603 without requiring complicated conversion formulas. Schematics, block diagrams, and software are all provided.
This application note will help the designer of a high-performance, multichannel data acquisition system (DAS) configure the proper interface between industrial sensors and high-performance ADCs. The example used is a power-grid monitoring system. The article explains advantages of the MAX11040K ADC's sigma-delta architecture, and how to select the proper schematic and components to achieve optimum system performance.
This reference design (RD) features a fully assembled and tested surface-mount printed circuit board (PCB). The RD board utilizes the MAX4885 1:2 or 2:1 multiplexer and other ICs to implement a complete video graphics array (VGA) 8:1 multiplexer. VGA input/output connections are provided to easily interface the MAX4885 RD board with VGA-compatible devices. The RD board gives the option to use a single 5V DC power supply (V+), or this RD board can be powered from any one of the eight VGA sources.
Many industrial and medical applications require temperature measurements with accuracies of ±1°C or better, performed with reasonable cost over a wide range of temperatures (-270°C to +1750°C), and often with low power consumption. Properly selected, Standardized, modern thermocouples paired with high-resolution ADC data acquisition systems (DASs) can cover this wide temperature range and ensure reproducible measurements, even in the harshest industrial environments.
This design idea shows how you can design a simple wireless temperature-monitoring system with data-logging capabilities by using a local temperature sensor and an ASK transmitter and receiver pair.
Many modern industrial, medical, and commercial applications require temperature measurements in the extended temperature range with accuracies of ±0.3°C or better, performed with reasonable cost and often with low power consumption. This article explains how platinum resistance temperature detectors (PRTDs) can perform measurements over wide temperature ranges of -200°C to +850°C, with absolute accuracy and repeatability better than ±0.3°C, when used with modern processors capable of resolving nonlinear mathematical equation quickly and cost effectively. This article is the second installment of a series on PRTDs. For the first installment, please read application note 4875, "High-Accuracy Temperature Measurements Call for Platinum Resistance Temperature Detectors (PRTDs) and Precision Delta-Sigma ADCs."
This reference design demonstrates the use of the MAX98400 Class D audio amplifier in a stereo audio docking station application. The MAX98400 2.1 demo box is a complete powered speaker dock that uses two MAX98400 ICs to drive a 3-channel speaker system consisting of two 2in satellite speakers and one 5in subwoofer. The reference design is intended to be used with a portable audio player as its main music source. The overall solution size is very compact and features active equalization, power-supply monitoring, and dynamic equalization for the subwoofer.
This reference design provides design ideas for a cost-effective, low-power liquid-level measurement data acquisition system (DAS) using a compensated silicon pressure sensor and a high-precision delta-sigma ADC. This document discusses how to select the compensated silicon pressure sensor, suggest system algorithms, and provide noise analyses. It also describes calibration ideas to improve system performance while also reducing complexity and cost.
This document explains how the Santa Fe (MAXREFDES5#) subsystem reference design meets the higher resolution, higher voltage, and isolation needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
This reference design describes a cost-effective, low-power liquid-level measurement data acquisition system (DAS) that use a compensated silicon pressure sensor and a high-precision delta-sigma ADC. The document explains how to implement a design that measures and distributes most industrial liquids using a noncontact measurement approach. It also suggests system algorithms, provides noise analysis, and describes calibration ideas to improve system performance while reducing complexity and cost.
The Fremont (MAXREFDES6#) subsystem reference design meets the high-resolution needs of low-voltage output sensor applications. Boards for purchase, hardware and firmware design files, and FFTs and histograms from lab measurements provide complete system information for rapid prototyping and development.
The Monterey (MAXREFDES15#) subsystem reference design is a high-accuracy industrial loop powered sensor transmitter that connects to any standard PT1000 resistance sensor and converts the linearized temperature to a 4–20mA current signal, which is immune to noise and remains constant over long distances.
This document explains how the Fresno (MAXREFDES11#) subsystem reference design meets the higher resolution and higher voltage needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
Many industrial and medical applications require temperature measurements with accuracies of ±1°C or better, performed with reasonable cost over a wide range of temperatures (-270°C to +1750°C) and often with low power consumption. This article describes design of the cost-efficient, portable, high-resolution data-acquisition systems (DAS) based on precision delta-sigma analog-to-digital converters (ADCs). It also presents formulas and software for implementation of standardized linearization calculation algorithms to accurately cover this wide temperature range while ensuring reproducible measurements.
This reference design shows how to develop a high-performance, high-voltage 2- or 3-wire 4–20mA current-loop transmitter suitable for industrial process control and smart sensors. Error analysis and overtemperature characterization data as well as hardware design and software are provided.
This document explains how the Campbell (MAXREFDES4#) subsystem reference design meets the higher resolution and isolation needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
The Novato reference design (MAXREFDES16#) is a 16-bit, high-accuracy, loop-powered temperature transducer that transmits temperature information from a remote object to the central control unit over a 4–20mA current loop and using the highway addressable remote transducer (HART) communication protocol.
The Petaluma (MAXREFDES30#) subsystem reference design is a cost optimized, high-speed and high-accuracy analog measurement solution for three-phase power monitoring applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
The Alameda (MAXREFDES24#) subsystem reference design features four dense, highly accurate analog outputs in a compact, galvanically isolated form factor. Each channel provides current or voltage. This design uniquely fits in programmable logic controllers (PLC), distributed control systems (DCS ), and other industrial applications. Hardware, firmware design files, and lab measurements are provided for rapid prototyping and development. The board is also available for purchase.