TIDA-00653 is a non-isolated 48 to 12V bidirectional converter reference design for 48V battery applications supported by the UCD3138 digital power controller. The design is flexible and can operate in a ZVS switching mode topology to optimize light-load efficiency, or in a hard-switching topology for simple system design. The bidirectional converter uses automatic phase shedding and offset technology for light loads and uses adaptive dead-band optimization to achieve greater than 96% compound efficiency gain. Because efficiency is greatly improved, heat losses are reduced, eliminating the need for air or liquid cooling in automotive applications. In addition, using the UCD3138 high control frequency controller and hardware-based state machine allows for miniaturization and frees up the system CPU for other functions such as battery management.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Evaluation kits (EV kits) are often the best tool for evaluating the applicability of a particular DC-DC converter for a specific application. Simulation, though never as accurate as the real hardware, is much faster and can be very effective for initial evaluations. Maxim Integrated’s MAX17504EVKITA is a 3.3V output EV kit for the MAX17504 member of the Himalaya family of high-voltage, synchronous step-down converters. The MAXIM_EESIM_MAX17504EVKITA.wxsch is a circuit file that enables simulation of this EV kit using the free EE-Sim SE simulation tool, downloadable from the Maxim Integrated website. EE-Sim SE is a variation of the commercial SIMPLIS/SIMetrix tool, which can also be used with this file.
The TIDEP-01010 reference design leverages TI single-chip millimeter-wave (mmWave) technology to implement an area scanner capable of detection and localization in 3D space. Using TI 60-GHz mmWave sensors, presence detection, as well as the ability to gauge the object's trajectory and speed, enables dynamic adjustment of the safety zone's size depending on the object's speed of approach, as well as the ability to predict before a safety zone is breached.
System example showing how to build a WIFI node by integrating the TM4C1294 MCU and CC3100 network processor from the TM4C product family. This reference example demonstrates the function of remotely controlling the operating status of an MCU through the Internet.
The main purpose of TIDA-00600 is to provide a cost-optimized small power management solution for ZigBee systems that require both rechargeable battery and DC connector power. The TIDA-00600 design provides power management departments with test data, design guidance, and light drawing files. This reference design features the LP5907, an ultra-small LDO with high PSRR and low noise, and the BQ24230, a stand-alone battery charger.
TIDA-00679 TI reference design demonstrates a solution for automotive LED taillight applications (tail/brake lights, turn signals, reverse lights). This reference design uses the TPS92630 linear LED driver, which is powered directly from the car battery through a smart battery reverse diode. The design offers the potential for cost savings and efficiency through low power dissipation and improved system thermal performance. The reference design also includes CISPR25 testing, pulse testing (per ISO 7637-2), and EMI/EMC radiated and conducted emissions testing. See TIDA-00677 for a similar design using the TPS92630-Q1 driven by a buck converter . See TIDA-00678 for a similar design driven by a boost converter .
The MAXREFDES1269 demonstrates how to build a DC-DC buck converter using the MAX20098 step-down controller for 5V DC output applications from a 6V to 36V input. This reference design delivers up to 20A at 5V output. The design uses a six-layer board. Table above shows an overview of the design specification.
MAXREFDES116# is an efficient, active clamp topology, isolated power supply design with 24V input, and a 5V output at 40W of power (8A). The design features the MAX17599, an active clamp, current-mode PWM controller optimized for industrial supplies. This entire circuit fits on a 20mm x 70mm board.
White light-emitting diode (WLED) drivers provide high efficiency and brightness matching for LCD backlighting in displays. To control brightness, these drivers regulate current going into LEDs that are arranged in either serial or parallel configuration. Charge pumps drive parallel LEDs whose currents are regulated with individual regulators or simple ballast resistors. Inductor-based converters deliver current to a string of LEDs, inherently equal. Both configurations aim to drive LEDs efficiently for cell phones, PDAs, and digital still cameras.
This document details the MAXREFDES138# subsystem reference design, a 36V to 57V input, 12V output, no-opto flyback isolated power supply capable of 12W. Design files and test results are included. Hardware is available for purchase.
This application note presents a reference design for a signal-lamp linear LED driver that consists of six strings of 4 LEDs per string and delivers 350mA per string with a common cathode configuration. Common cathode arrangements require that the current-sense resistors be placed on the high (anode) side, which forces the LED drivers to use a level shifter.
The Multi Standard 45W Mobile Charger enables the design of power supplies featuring extreme low standby power with the output voltage in full regulation, very high efficiency and high reliability. The NXP chipset used is targeting mobile and notebook power supplies with power requirements up to 100W. Supplies can be designed easily and with a minimum number of external components.
65 W isolated flyback general purpose adapter using MinE-CAP ICs to achieve the highest possible power density and design simplicity
This single-layer reference design for pedestal fans and other similar appliances features 2-inch diameter pads and an integrated controller that reduces component count. In addition, sensorless control eliminates the need for Hall sensors and provides multiple protection functions such as overcurrent protection, undervoltage lockout, and overheating protection, each of which improves the robustness of the design. This reference design is suitable for 8V-24V input voltage and is capable of delivering 3A (peak)/2A (rms) phase current.