The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators. The MAX17595 offers optimized input thresholds for universal input AC-DC converters and telecom DC-DC (36V to 72V input range) power supplies.
7.5W 5V Offline Flyback Converter Using the MAX17595
The MAX1606 is a step-up DC-DC converter that contains a 0.5A internal power switch and a 0.5A output isolation switch in an 8-pin μMAX® package.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity.
TIDA-00940 is a 3W non-isolated bias power supply with up to 80% efficiency and excellent EMI performance, designed for motor control and drive subsystems in major appliances, saving system costs and having other features described here Main advantages. This reference design uses a buck topology to provide two non-isolated outputs, implemented using TI's UCC28881 and TPS5405 controllers, to provide comprehensive protection. The hardware is designed and tested to comply with EN-55014 Class B requirements for household appliances.
This reference design operates over an 8V - 16V input range and delivers 5V @ 1A at the output. This design is content from the presentation material of the TI Power Workshop. This design has been built and tested and the design files and test report are included. This is a good low cost design that demonstrates the fundamentals of a non-isolated, non-synchronous dc-dc buck converter.
The evaluation kit supports the MC33879 device, an 8-output, hardware-configurable high-side/low-side switch that provides 16-bit serial input control.
12V Offline Flyback Converter Using the MAX17595
The MAXREFDES1196 is a DC-DC boost power supply that delivers up to 4A at 24V from a 10V to 18V supply voltage. It is designed for equipment that needs a high-power, 24V output voltage that is generated from a 12V DC bus.
This application note is an RGB LED driver reference design for a low-power projector. The design features a single MAX16821 HB LED driver to drive the RGB LEDs one at a time. This approach reduces the components needed, resulting in an efficient, small, and economical design. Board layout and test results are shown.
This reference design uses a low-cost MSP430 and two DRV8860 eight-channel low-side drivers to drive eight seven-segment displays with brightness control. The display module benefits from the DRV8860's wide power supply range, high current, PWM brightness control, serial daisy-chain connectivity, and output scalability to hundreds of LEDs. It is a complete solution, equipped with six demonstration display modes via the onboard MCU program, with integrated protection against short circuit, under voltage and over temperature.