Maxim’s power supply experts have designed and built a series of isolated, industrial and medical power-supply reference designs. Each of these power supplies efficiently converts 24V or 12V into useful voltage rails at a variety of power levels. Each design has been tested for load and line regulation, as well as efficiency and transient performance.
MAXREFDES124# is an efficient no-opto flyback topology with 12V input, and a 5.5V output at 22W of power (4A). The design features the MAX17690, a peak-current-mode converter with flexible switching frequency and the MAX17606, a secondary side MOSFET driver for a flyback converter. The combination of no opto-coupler and a secondary-side MOSFET results in a design that is optimized for space, cost, and efficiency. This entire circuit fits on a 20mm (0.7874in) × 66mm (2.5984in) board.
Refer to the Details tab Details tab for more information. Design files including schematic, PCB files and bill of materials (BOM) can be downloaded from the Design Resources tab. Most boards feature through-hole pins for immediate board placement and accelerated prototyping. As with all Maxim reference designs, boards are available for purchase.
All reference designs on this site are sourced from major semiconductor manufacturers or collected online for learning and research. The copyright belongs to the semiconductor manufacturer or the original author. If you believe that the reference design of this site infringes upon your relevant rights and interests, please send us a rights notice. As a neutral platform service provider, we will take measures to delete the relevant content in accordance with relevant laws after receiving the relevant notice from the rights holder. Please send relevant notifications to email: bbs_service@eeworld.com.cn.
It is your responsibility to test the circuit yourself and determine its suitability for you. EEWorld will not be liable for direct, indirect, special, incidental, consequential or punitive damages arising from any cause or anything connected to any reference design used.
Supported by EEWorld Datasheet