This is a single channel LiDAR demo board that allows you to check the operation of a high-speed optical front end using the LiDAR ToF range technology. The measurement distance can be up to 50m. The LiDAR ToF architecture can be applied in the automotive as well as consumer and industrial machinery sectors.
The HybridPACK™ 1 is an automotive qualified power module designed for hybrid electric vehicle (HEV) applications in the 20–30kW power range.
HybridPACK™ 1 is an automotive qualified power module designed for hybrid electric vehicle (HEV) applications in the 20–30kW power range
25W-500W scalable output power Class D audio power amplifier reference design. Using IRS2092 protected digital audio driver
This design uses the variable gain wideband amplifier VCA810 to increase the gain and expand the AGC control range, and uses software compensation to reduce the step interval of the gain adjustment and improve the accuracy. The input part uses a high-speed voltage feedback op amp 0 P A842 as a follower to increase the input impedance, and a protection circuit is added to the input part without affecting performance. Various anti-interference measures are used to reduce noise and suppress high-frequency self-excitation. The power output part is made of discrete components. The passband of the entire system is 4.4 k Hz ~ 8.4 MH z, with a minimum gain of 0 dB and a maximum gain of 70 dB. The gain step is ld B/6dB/arbitrarily set. The error between the preset gain and the actual gain below 60 dB is less than 0.2 dB. The effective value of the undistorted output voltage reaches 10.1 V, and the AGC control range is 52 dB when outputting 4.5 ~ 5.5 V.
The KITOPAMP1120 provides a selection of operational amplifiers and comparators useful for evaluation and to promote the product family.
Maxim Integrated partnered with First Sensor to design a reference design featuring the First Sensor 4-channel APD array, Maxim quad TIA with multiplexer MAX40662, and Maxim single fast comparator MAX40026.
The home facilities on the RV include: lighting, sofas, seats, air conditioners, TVs, stereos and other electrical appliances. It is inconvenient to set independent switches for each appliance. The smart RV control system solves such problems. The deep learning speech recognition technology of artificial intelligence technology achieved a breakthrough in 2013, and the voice interaction method will occupy an important position for a long time after the technological breakthrough. Large-size touch screens are also the development trend of vehicle-mounted human-computer interaction equipment in recent years. This system uses speech recognition and display human-machine interface (HMI) as human-computer interaction equipment, and users control electrical appliances through voice and touch screen.
In traffic accidents, rear-end collisions occur frequently due to sudden braking of the vehicle in front. Rear-end collisions are usually caused by failure to maintain a sufficient safe distance and the brakes cannot stop the vehicle. The time from when you discover an emergency ahead to when you apply the brakes is called reaction time. The length of reaction time directly affects the length of the braking distance. Especially when driving at high speed, a serious traffic accident will occur within one second. The long reaction time does not mean that the driver is slow to react, but that he does not know whether the car in front is applying the brake lightly or hard. When he finds out, two seconds have passed, and it is very likely that he will not be able to brake. If the vehicle in front The brake lights with flashing function are different. When you see the brake lights flashing, you must be stepping on the brakes harder. At this time, you should also step on the brakes harder, and the reaction time will be shortened. Therefore, in addition to letting the car behind you know whether to apply the brake lightly or hard, the flashing brake light is also particularly eye-catching and can remind the car behind you in time.
Using TPA3110 digital power amplifier chip, the power can reach 15W, and there are two power interfaces. The Bluetooth part uses bk8000L finished module, which has good performance and affordable price. Supports button playback and pause, track switching, volume adjustment, and also supports external audio line input and microphone input. After testing the finished product, the sound quality is good, the Bluetooth connection is relatively stable, the button functions are normal, the external audio line input is normal, and the microphone calls are normal. A complete AD project file is provided, which can be modified as needed, and the BOM needs to be exported by yourself.
The automotive data logger consists of NuMicro® NUC131 microcontroller and N9H30 microprocessor. NUC131 supports CAN Bus to log On-Board Diagnostics-II (OBD-II) data, which includes vehicle speed, engine RPM, engine coolant temperature, intake air temperature, MAF air flow rate and throttle position from engine control unit (ECU) simulator. Then NUC131 converts the OBD-II raw data and transmits the above information to N9H30. N9H30 shows the received information on 7” TFT-LCD human machine interface enhanced by emWin.
The PMP11438 is a tool used to compare three different power solutions for converting a 12V bus to 1.2V (6-10A). The 1.2V output voltage is suitable for DDR4 memory applications. Each solution offers advantages in full-load efficiency, light-load efficiency, density, height, transient response, or some combination thereof.
PMP20327 is a synchronous 4-switch buck/boost converter using the LM5175 controller and can be used as a reference design for heater element power stages in applications such as e-cigarettes. Output voltages from 1V to 10V can be selected over a current range of 20A to 45A by using a trim resistor on the FB pin with a bias voltage of 0.2V to 3.1V. This design also uses the non-synchronous boost regulator LMR62014 to provide the bias voltage for the LM5175 operating in low input voltage mode. The current mode controller has built-in LM5175 pulse-by-pulse current limiting function. This board includes enable, sync, and power-good functions. The design supports resistive heating elements with resistances ranging from 0.1Ω to 0.5Ω, thus supporting a variety of 200W operating conditions.
The PMP21251 reference design uses the UCC28056 CRM/DCM PFC controller, UCC256304 enhanced LLC controller and integrated driver to provide a 12V/10.8A output (continuous current, 14.4A peak current) from a universal AC input. This design achieves peak efficiency of 92.4% at 115VAC input and 94.0% at 230VAC input. Efficiency and power factor also meet 115V and 230V internal 80 PLUS Gold specifications and DoE Level VI requirements. Additionally, without turning off the PFC, the design can achieve power consumption as low as 89mW at an input supply voltage of 230VAC.
This reference design provides an output short-circuit protection solution for the TPS61088 boost converter. This function is implemented through the overcurrent protection (OCP) circuit. When the output is shorted to ground or the load current is higher than a certain value, the OCP circuit will disconnect the TPS61088 from the corresponding load. This solution only requires an additional low-cost comparator, a sensing resistor and a small N-MOSFET. By adding this small amount of circuitry, the TPS61088 is protected from output short circuit and overload conditions.
The 3D machine vision reference design uses Texas Instruments' DLP software development kit (SDK), allowing developers to easily build by integrating TI's digital micromirror device (DMD) technology with cameras, sensors, motors and other peripherals 3D point cloud. Highly differentiated 3D machine vision systems leverage the DLP® LightCrafter™ 4500 Evaluation Module (EVM) powered by the DLP® 0.45-inch WXGA chipset to provide the flexibility to control high-resolution, accurate graphics for industrial, medical and security applications.
This design provides a reference solution for a three-phase inverter rated up to 10kW, designed using the reinforced isolated gate driver UCC21530, reinforced isolated amplifiers AMC1301 and AMC1311, and MCU TMS320F28027. Lower system cost can be achieved by using the AMC1301 with the MCU's internal ADC to measure the motor current and using a bootstrap supply for the IGBT gate driver. The inverter is designed with protection against overload, short circuit, ground fault, DC bus under/overvoltage and IGBT module overtemperature.
This reference design is a complete solution for a brushless DC ceiling fan controller operating on AC power. It uses the DRV10983 24V three-phase motor driver to drive the motor through sinusoidal current and sensorless control. UCC28630 converts 90-265 VAC to 24 VDC. The MSP430G2201 Value Series processor decodes the infrared signal used for speed control. The included firmware allows easy integration of standard infrared remote controls based on the NEC transmission protocol.
TIDA-00772 is an 18A RMS driver for three-phase brushless DC (BLDC) motors in power tools powered by 5-cell Li-ion batteries (up to 21V). The design is a compact 45 x 50 mm actuator that enables sensor-based trapezoidal control. The design uses a discrete compact MOSFET-based three-phase inverter that delivers 18A RMS continuous (60A peak for 1 second) winding current without the need for any external cooling devices or heat sinks. The gate driver's slew rate control and charge pump ensure maximum inverter efficiency (>98% at 18V DC) with optimal EMI performance. Cycle-by-cycle overcurrent protection prevents large stall currents in the power stage, and the board can operate in ambient temperatures up to 55°C. The small form factor allows for flexible plate placement, the high efficiency allows the battery to last longer, and the 60A peak current capacity delivers high instantaneous peak torque in power tools.
High-frequency critical conduction mode (CrM) totem pole power factor correction (PFC) is an easy way to design high-density power solutions using GaN. The TIDA-0961 reference design uses TI's 600V GaN power stage LMG3410 and TI's Piccolo™ F280049 controller. This high-density (165 x 84 x 40mm) 2-stage dual-interleaved 1.6kW design is suitable for a variety of space-constrained applications such as server, telecom and industrial power applications. Power stage interleaving reduces input and output ripple current. Hardware is designed to meet conducted emission, surge and EFT requirements to help designers achieve 80+ Titanium specifications.