The reference design is a BLDC motor controller designed to be powered by a single 12V (nominal voltage) supply with a wide voltage range found in typical automotive applications. The board is designed to drive motors in the 60W range, which requires a current of 5 amps. The size and layout of the board facilitates evaluation of the drive electronics and firmware, with easy access to key signals on various test points. A wide variety of motors can be connected by using a 3-contact connector or soldering the motor phase wires to the plated through holes in the board. The 12VDC supply is fused to prevent damage to the board or bench power supply in the event of a motor failure during testing. Commands and the status of the motor can be transmitted through a standard JTAG connector or through PWM input and output signals. The user can also reprogram the microcontroller through the JTAG connector, allowing customization for various applications. This design forms the solution by incorporating the DRV8301-HC-C2-KIT board.
For the integration of wifi module, the most urgent things in the early stage are
1: the application reference of wifi module peripheral circuit in hardware
2: the driver information in software
DC1018B-B, an overvoltage protection regulator demonstration board for the LT4356-2 with auto-retry capability where the auxiliary amplifier remains on during shutdown.
Ardufocus is the only OSS/OSH controller to support two independent focus motors, the high-resolution mode allows for stepwise sub-micron movements, multiple acceleration profiles, and it never forgets the focuser position between restarts.
2 Layers PCB 54.6 x 90.2 mm FR-4, 1.6 mm, 1, HASL with lead, Green Solder Mask, White silkscreen;
This open source ferry robot has unique functions such as the anti-interference standing ability of a tumbler and automatic roll-up.
The wind turbine is mainly 3D printed and equipped with a BLDC motor as a generator. Foldable and no larger than 2L soda bottle. Easy to replicate and low cost to manufacture.
Starfish is a pick and place machine control board built on the Raspberry Pi RP2040 microcontroller and Trinamic TMC2209 motor driver. This control board has some similarities to a 3D printer control board, but it has some unique issues to solve—including controlling solenoids and communicating with vacuum sensors. All board information is open source, and detailed explanations are provided to help you copy successfully.
ESC is the abbreviation of Electric Speed Controller, that is, electronic speed controller, or ESC for short. The author is Benjamin Vedder, so it is called VESC. You may have heard of it, which is Benjamin ESC. This project is mainly divided into several parts, VESC firmware, bill of materials, VESC hardware, and VESC tool software. It is a very complete software and hardware project, and the supporting software is also excellent.
Both software and hardware are fully open source. The control board is designed based on STM32G4. This upgrade adds a flexible I/O subsystem and expands the types of feedback encoders and peripherals that the controller can receive.
The YMFC Flight Controller and Mini Drone is a simple, affordable, Arduino programmable open source circuit board that can be used as a standalone mini drone or as a flight control for a larger (F450 size) drone device. The simplicity of its design and control, as well as its open source nature, make the YMFC ideal for educational projects and drone enthusiasts.
This BLDC motor driver board is capable of driving one BLDC motor, or one or two bidirectional DC motors (H-bridge configuration, cascaded to support a second motor) or up to three unidirectional DC motors (half-bridge configuration).
Picoclick is a simple IoT button in a very small package. The size of the PCB is only 18x20mm, and the height with the 300909 battery is only about 10mm. It's able to connect to your local WiFi at an impressive speed of about 1.5 seconds on average. Yes, since it calls IOT-Button, it uses WiFi of course! This opens up countless possibilities for that little device.
Picoclick-C3 The name relates to its new processor, the ESP32-C3, a single-core RISC-V 160MHz CPU. Picoclick C3T is a small WiFi and BLE IoT button suitable for a variety of applications. Originally designed for smart homes, Picoclick can also be used as an actuator for IFTTT automation or as an MQTT device. It is based on the single-core ESP32-C3 RISC-V processor, so it has a lot of useful features. The C3T measures just 10.5mm x 18mm.
SmartKnob is an open source input device with software-configurable stops and virtual locators. The brushless gimbal motor is paired with a magnetic encoder to provide closed-loop torque feedback control, allowing the feel of the detent and stop to be dynamically created and adjusted.
Gregory Davill is a technical expert from Australia who is very famous and active in the field of open source hardware. In December 2020, he insisted on designing a circuit board every day, using KiCad to complete the circuit design and PCB layout and routing. This is the adventure-calendar-of-circuits-2020 project. This design is a JTAG programmer based on FT232H.
It is a very beautiful and convenient little board. But it has a small flaw, the ice40 FPGA it uses is very simple, and it's generally fun to see people doing exciting projects with 5k LUTs. Sometimes it's convenient to have some extra space available when experimenting.