Multifunctional mini computer (SD, wifi, OLED) design source code and related test programs
This reference design describes a cost-effective, low-power liquid-level measurement data acquisition system (DAS) that use a compensated silicon pressure sensor and a high-precision delta-sigma ADC. The document explains how to implement a design that measures and distributes most industrial liquids using a noncontact measurement approach. It also suggests system algorithms, provides noise analysis, and describes calibration ideas to improve system performance while reducing complexity and cost.
This article presents a reference design for a PC-based oscilloscope. The MAX1393 ADC and MAX1396 EV (evaluation) kit are featured. Schematics, software, and explanation of software functions are all provided.
This document explains how the Fresno (MAXREFDES11#) subsystem reference design meets the higher resolution and higher voltage needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
This design idea shows how you can design a simple wireless temperature-monitoring system with data-logging capabilities by using a local temperature sensor and an ASK transmitter and receiver pair.
The MAXREFDES165# is a fully IO-Link®-compliant, 4-port IO-Link master reference design. This design uses TMG TE’s IO-Link master stack and is both an IO-Link master reference design as well as an IO-Link sensor/actuator development and test system. Four IO-Link ports allow for simultaneous testing of up to four different sensors (or actuators).
In a typical photodiode current-monitoring application, the voltage drop between the current monitor and the avalanche photodiode (APD) varies with the temperature and current flowing through it, thereby changing the overall gain. This application note describes a regulator circuit that solves this problem by maintaining a constant voltage drop across the current monitor and APD.
This application note will help the designer of a high-performance, multichannel data acquisition system (DAS) configure the proper interface between industrial sensors and high-performance ADCs. The example used is a power-grid monitoring system. The article explains advantages of the MAX11040K ADC's sigma-delta architecture, and how to select the proper schematic and components to achieve optimum system performance.
This article shows how to use a zero-drift, precision, instrumentation amplifier with a pair of rejustors (passive electrically-adjustable resistors) and gain-setting resistors to ensure high accuracy. The MAX4208 precision instrumentation amplifier serves as the example device. Experiments are described and test results presented.
The MAX9503/MAX9505 DirectDrive™ video filter amplifiers integrate an analog switch (MAX9505 only) and a negative charge pump that can be used to improve performance for audio/video applications.
This application note briefly reviews the history of the I2C bus. It then presents I2C configurations proven to ensure easy communication between the master and slaves on the bus. Examples include schematics and code. Appendix 1 contains helpful definitions of terms used in this article.
WCT-15W1COILTX is an NXP15 W single coil wireless charging transmitter reference platform for the MWCT1012CFM transmitter controller IC.
Because the charging process for Li+ batteries can take an hour or longer, testing a Li+ battery charger using its natural load (i.e., a battery) is time consuming and inconvenient. This application note presents a simple circuit for simulating the behavior of a Li+ battery, thus providing a more convenient method for testing Li+ battery chargers than using real batteries.
Many modern industrial, medical, and commercial applications require temperature measurements in the extended temperature range with accuracies of ±0.3°C or better, performed with reasonable cost and often with low power consumption. This article explains how platinum resistance temperature detectors (PRTDs) can perform measurements over wide temperature ranges of -200°C to +850°C, with absolute accuracy and repeatability better than ±0.3°C, when used with modern processors capable of resolving nonlinear mathematical equation quickly and cost effectively. This article is the second installment of a series on PRTDs. For the first installment, please read application note 4875, "High-Accuracy Temperature Measurements Call for Platinum Resistance Temperature Detectors (PRTDs) and Precision Delta-Sigma ADCs."
This reference design provides design ideas for a cost-effective, low-power liquid-level measurement data acquisition system (DAS) using a compensated silicon pressure sensor and a high-precision delta-sigma ADC. This document discusses how to select the compensated silicon pressure sensor, suggest system algorithms, and provide noise analyses. It also describes calibration ideas to improve system performance while also reducing complexity and cost.
NXPThe SABER platform enables you to evaluate the multimedia performance of ARM® Cortex®-A9-based i.MX 6 series processors.
Many industrial and medical applications require temperature measurements with accuracies of ±1°C or better, performed with reasonable cost over a wide range of temperatures (-270°C to +1750°C) and often with low power consumption. This article describes design of the cost-efficient, portable, high-resolution data-acquisition systems (DAS) based on precision delta-sigma analog-to-digital converters (ADCs). It also presents formulas and software for implementation of standardized linearization calculation algorithms to accurately cover this wide temperature range while ensuring reproducible measurements.
Development tools for the PXR40 32-bit Power Architecture microcontroller