• EMC-compliant automotive LED taillight reference design with continuous turning animation display

    This design is a simulation solution for car taillights with sequential turning animations. This design is compatible with TL81000 RI and BCI testing (third party EMC laboratory). This design also demonstrates complete automotive diagnostics for low quiescent current in failure modes.

    Schematic PCB

  • Automotive 1.3M camera module reference design using OV10640, DS90UB913A and realizing coaxial power supply

    This camera design demonstrates the smallest solution size for a 1.3-megapixel automotive camera. Only a single coaxial cable connection provides digital video, power, camera control and diagnostics. The output video format is 10-bit up to 100MHz or 12-bit up to 75MHz.

    Schematic PCB

  • 480W, 97% Efficiency Ultra-Compact (480W/in3) Bidirectional DC/DC Reference Design

    The TIDA-00705 is an ultra-compact (1”x1”x1”) high-efficiency bidirectional DC to DC power converter capable of delivering 480W for low energy storage (LES) and battery backup power applications. Specifically, it is designed for server battery backup Unit (BBU) embedded server PSU. The reference design is based on a two-phase spaced half-bridge power stage controlled using the UCD3138 digital power stage controller. The design has built-in DC bus overcurrent, overvoltage protection and battery overcurrent, overvoltage protection. Voltage protection and phase current balancing to dissipate heat.

    Schematic PCB

  • 6-Cell EV/HEV Integrated Battery Monitor and Protector Reference Design with Passive Balancing

    The TIDA-00821 reference design is a stackable monitor and protector for use in large lithium-ion batteries that provides monitoring, balancing and communication functions. Each bq76PL536A-Q1 EVM can manage 3 to 6 cells in Li-ion battery applications. Up to 32 bq76PL536A-Q1 EVM modules can be stacked. The system provides fast cell balancing, diagnostic capabilities, and module-to-controller communication. In addition, an independent
    protection circuit is integrated.

    Schematic PCB

  • CISPR 25 Category 5 USB Type-C port reference design with USB 3.0 data support

    TIDA-00987 is a reference design for automotive media ports requiring data transmission. This design supports USB 2.0 and USB 3.0 data via the 15W USB Type-C™ port. Customers can accelerate their media port systems by leveraging a complete reference design that includes AEC-Q100 compliant CISPR 25 Category 5 tested analog integrated circuits (ICs). This design creates a reliable and flexible solution that allows the system to charge USB Type-C and legacy devices in a small 1 x 2.5-inch solution.

    Schematic PCB

  • USB Type-C™ and Power Delivery MicroDock Reference Design for Video and Charging

    The USB Type-C™ and Power Delivery (PD) MicroDock Evaluation Module (EVM) provides a complete USB Type-C dock reference solution including audio, USB data, power delivery and video. The EVM has a small 2-inch × 4-inch form factor and supports both sourcing and sinking power capabilities through the USB Type-C PD host port. Video output capabilities include DisplayPort and HDMI.

    Schematic PCB

  • Flexible Interface for Synchronous Coherent DAQ Using Multiple ADCs (PRU-ICSS) Reference Design

    This reference design demonstrates an interface implementation to multiple high-voltage bipolar input, 8-channel, multiplexed input SAR ADCs (6) via a Sitara Arm processor using a Programmable Real-Time Unit (PRU- ICSS) expands the number of input channels. The ADCs can be configured so that the same channels can be sampled simultaneously across all ADCs. This design highlights the PRU-ICSS's ability to handle a data rate of 1536ksps (each sample = 16 bits) (640 samples sampled per line cycle). For a 50Hz period, this equates to 32ksps per channel between 6 ADCs simultaneously (640 samples/period*50Hz*6 ADC*8 channels = 1536ksps). In addition, a second PRU is used to post-process the data to achieve coherent sampling.

    Schematic PCB

  • Vienna Rectifier-Based Three Phase Power Factor Correction Reference Design Using C2000 MCU

    Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off board EV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers (MCUs). It also enables monitoring and control of Vienna rectifier based on the HTTP GUI page and Ethernet support(F2838x only).The hardware and software available with this design helps accelerate your time to market.Vienna rectifier power topology is used in high power three phase power factor correction applications such as off board Electric Vehicle Charging and telecom rectifiers. This design illustrates how to control a vienns rectifier using C2000 Microcontroller. Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off-board electric vehicleEV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers. The hardware and software available with this design helps accelerate your time to market.The Vienna rectifier power topology is used in high power three phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to control a Vienna rectifier using C200-MCU. 

    Schematic PCB

  • Battery tester reference design for high current applications

    Li-Ion battery formation and electrical testing require accurate voltage and current control, usually to better than ±0.05% over the specified temperature range.  This reference design proposes a solution for high-current (up to 50 A) battery tester applications supporting input (bus) voltages from 8 V–16 V and output load (battery) voltages from 0V–5V. The design utilizes an integrated multi-phase bidirectional controller, LM5170, combined with a high precisiondata converters and instrumentation amplifiers to achieve charge and discharge accuracies of 0.01% full scale. To maximize battery capacity and minimize battery formation time, the design uses highly-accurate constant current (CC) and constant voltage (CV) calibration loops with a simplified interface. All key design theories are described guiding users through the part selection process and optimization. Finally, schematic, board layout, hardware testing, and results are also presented.

    Schematic PCB

  • 24V, 480W (nominal), 720W (peak), reliable AC/DC industrial power supply reference design with energy efficiency higher than 93.5%

    The TIDA-01494 reference design is a compact, high-efficiency, 24V DC, 480W nominal, 720W peak output reference design for industrial AC/DC power supplies. The circuit includes a front-end continuous conduction mode (CCM) power factor correction (PFC) circuit, followed by a powerful LLC stage with synchronous rectification. The design ensures an efficiency greater than 93.5% over a wide load range, allowing the system to operate without forced cooling. The UCC256301-based LLC stage utilizes the ZCS avoidance feature in the UC256301 to achieve peak output power, minimizing the PFC bulk capacitor to meet holdup requirements while enabling the system to handle short circuit and overcurrent conditions. The UCC24612-2-based synchronous rectifier helps minimize losses in the output rectifier, while its advanced proportional gate driver and dead-time optimization help avoid breakdown and minimize losses.

    Schematic PCB

  • Single-phase sub-electricity meter for smart buildings

    The Energy Monitor is designed as a complete set of tools for measuring and displaying the energy consumption of individual loads within a smart building, such as major appliances. This tool allows engineers to quickly evaluate TI's solutions for low-cost energy metering applications. The reference design comes with hardware and software design files to speed engineers' development process. The energy monitor design can also be expanded to integrate with TI's ZigBee and Wifi reference designs to add wireless communication capabilities to the end product.

    Schematic PCB

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号