JFET

LFRD003: Automatic water meter reading (AMR) reference design

LFRD003: Water Meter Automatic Meter Reading (AMR) Reference Design

 
Overview

General Description

The MAX7032 transceiver reference design (RD) is a self-contained evaluation platform for exercising the device as a wireless automatic meter reading (AMR) and water meter demo system. With the use of the Maxim USB-to-JTAG board (MAXQJTAG-USB), the MAXQ610 on both the handheld interface (HHI) unit and the various meter (MTR) radio modules can be programmed by the end user.

The meter board enables basic human interaction through a single momentary switchinput and an LED for visual feedback. The MTR is designed to be compact, providing a self-contained transceiver board with a radio, microcontroller, and multiple "ports" for connecting various meter inputs to the system. Two separate designs are provided: one with an MMCX antenna connection, and the other with a small-footprint antenna-mounting option. Input to the MTR system can be configured with up to six ports, and the primary input interfaces with a "pulse" or dry contact (reed) output meter. This board can be operated from any 3V power source (1.7V to 3.6V for the MAXQ610, 2.1V to 3.6V for the MAX7032).

The HHI board has seven menu keys for user input, a reset switch, a 102 pixel x 64 pixel LCD display with multicolor LED backlighting for menu interactions, plus a receive signal indicator (RSI) LED. The shape of the HHI fits within a Series 55 BOX enclosure, and has a high-density connector for interfacing with an RF module.

Both systems are preprogrammed with operational firmware to demonstrate a simple wireless AMR meter (slave)/reader (master) system. Gerber files are available for simple cut-and-paste designs of the radio sections or the full implementation.

Features

  • Proven printed circuit board (PCB) layout
  • Proven component parts list
  • Preprogrammed transceiver (TRX) pair for quick demonstration capabilities
  • Free MAXQ® microcontroller programming tools available for flexible operations
Documentation
 
 
Search Datasheet?

Supported by EEWorld Datasheet

Forum More
Update:2025-05-11 09:40:00

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号