The Acontis EC-Master EtherCAT Master stack is a highly portable software stack that can be used on a variety of embedded platforms. EC-Master supports high-performance TI Sitara MPUs and provides an advanced EtherCAT Master solution that customers can use to implement EtherCAT communication interface boards, EtherCAT-based PLCs or motion control applications. The EC-Master architecture is designed so that users do not need to plan additional tasks, so the full stack functionality is available even on platforms without an operating system (such as TI Starterware supported on AM335x). This architecture combined with high-speed Ethernet drivers allows users to implement EtherCAT master on the Sitara platform with very short cycle times of 100 microseconds or less.
The TIDEP0066 reference design uses TI's Embedded Speech Recognition (TIesr) library to highlight the speech recognition capabilities of the C5535 and C5545 DSP devices; and based on successful keyword collection, indicates how to run speech to print pre-programmed keywords on the C5535eZdsp OLED screen Trigger example. This design also describes the steps to customize trigger words.
The TIDEP0084 reference design shows how to connect sensors to the cloud over long-range sub-1GHz wireless networks suitable for industrial environments such as building control and asset tracking. It is powered by TI Sitara™ AM335x processors and SimpleLink™ sub-1GHz CC1310/CC1350 devices. This reference design comes pre-integrated with TI's 15.4-Stack Software Development Kit (SDK) and Linux® TI Processor Software Development Kit (SDK) for sub-1GHz star networking. TI Design Network Partner stackArmor enables cloud connectivity and visualization of sensor node data through cloud application services.
This TI reference design provides a low-component-count, low-cost solution for a 4 to 20mA loop-powered resistance temperature detector (RTD) temperature transmitter. The design utilizes the on-chip smart analog combination module in the MSP430FR2355 MCU to control the loop current, thus eliminating the need for a separate DAC. The design achieves 12-bit output resolution and 6µA output current resolution. The design incorporates reverse polarity protection as well as IEC61000-4-2 and IEC61000-4-4 protection on the loop power input.
CLLLC resonant DABs with bidirectional power flow capabilities and soft switching characteristics are an ideal candidate for hybrid electric vehicle/electric vehicle (HEV/EV) on-board charger and energy storage applications. This design demonstrates the use of a C2000™ MCU to control this power topology in closed voltage and closed current loop modes. The hardware and software available for this design can help you
reduce your time to market.
This reference design helps designers develop a cost optimized ultrasonic water-metering subsystem using an integrated, ultrasonic sensing solution (USS) module, which provides superior metrology performance with low-power consumption and maximum integration. The design is based on the 64KB MSP430FR6043 microcontroller (MCU), with integrated high-speed, ADC-based, signal acquisition and an integrated low energy accelerator (LEA) to optimize digital signal processing.
The Vienna rectifier power topology is used in high power three-phase power factor (AC-DC) applications such as off-board EV chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller (MCU) to control a power stage. Monitoring and control of Vienna rectifiers is also implemented based on HTTP GUI pages and Ethernet support (F2838x only). The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C2000 microcontroller to control a Vienna rectifier. The Vienna rectifier power topology is used in high power three-phase power factor (AC/DC) applications such as off-board electric vehicle (EV) chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller to control a power stage. The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C200-MCU to control a Vienna rectifier. Learn more about what C2000 MCUs can offer for electric vehicle applications
Interleaved Continuous Conduction Mode (CCM) Totem Pole (TTPL) Bridgeless Power Factor Correction (PFC) using high-bandgap GaN devices is an attractive power topology due to its high power efficiency and reduced size. This design illustrates the use of a C2000™ MCU and LMG3410 GaN FET module to control this power stage. To improve efficiency, this design uses adaptive dead time and phase shedding methods. Nonlinear voltage compensators are designed to reduce overshoot and undershoot during transients. This design chooses a software phase locked loop (SPLL) based approach to accurately drive the totem pole bridge. The hardware and software used in this design help reduce your time to market.
This reference design helps designers develop an ultrasonic water-metering subsystem using an integrated, ultrasonic sensing solution (USS) module, which provides superior metrology performance with low-power consumption and maximum integration. The design is based on the 256KB MSP430FR6047 microcontroller (MCU), with integrated high-speed, ADC-based, signal acquisition and an integrated low energy accelerator (LEA) to optimize digital signal processing.
This design implements a bidirectional, non-isolated buck-boost power converter suitable for solar microconverters, hybrid electric vehicles (HEV), and battery charging applications.
TIDM-CAPTIVATE-64-BUTTON TI reference design demonstrates an ultra-low power touch panel with 64 buttons that can be controlled from a single MSP microcontroller (MCU) with CapTIvate™ technology. The design uses mutual capacitance technology to ensure that all 64 buttons are tightly packed and can be controlled with just 16 MCU pins. This touch panel easily connects to the CAPTIVATE-FR2633 MCU target module included in the MSP-CAPT-FR2633 MCU development kit.
This reference design demonstrates an ultra-low power capacitive touch panel solution powered by a single MSP430™ microcontroller (MCU) with CapTIvate™ technology. The use of self- and mutual-capacitance technology enables multifunctional capacitive touch panels (buttons and proximity sensors) to be used in electronic locks and other applications with various human-machine interfaces. This TI reference design also shows how to extend battery life by cyclically running the MSP430 CPU and switch between low-power and run modes.
This reference design demonstrates how to use the CapTIvate software library communication module to connect an MSP430 MCU with CapTIvate™ technology to an MSP432 MCU host microcontroller. This design integrates capacitive touch technology and human touch, using MSP432 MCU as the host to drive the QVGA LCD color screen.
The Noise Tolerant Capacitive Touch HMI Design (TIDM-CAPTOUCHEMCREF) is a reference design for implementing a noise tolerant capacitive touch human machine interface (HMI). It integrates TI's MSP430FR2633 microcontroller (MCU) with high-performance CapTIvate™ touch technology and the TPS7A4533 linear regulator and UCC28910 flyback switch. This reference design demonstrates how a design that can pass challenging conducted RF immunity, electrical fast transient/burst immunity can be designed using a trinity design approach that includes hardware design techniques, CapTIvate technology peripheral functionality, and software signal technology. Hardware and software for system-level testing of electrostatic discharge immunity and electrostatic discharge immunity.
This reference design uses the MSP430FR4133 FRAM-based MCU and is a remotely controlled, full-featured, battery-powered magnetic pulse water meter with wired and wireless automatic meter reading (AMR) capabilities. The instantaneous flow rate and total flow rate will be displayed on the LCD screen. The design operates in a low-power mode and reduces CPU workload, thereby helping to reduce overall power consumption.
This BoosterPack package contains an "EM Adapter BoosterPack". The purpose of this EM adapter board is to provide an easy-to-use bridge between any TI MCU LaunchPad and various TI RF Evaluation Modules (EMs), such as the CCxxxx Low Power RF Evaluation Modules. No specific software is provided, so it is the user's responsibility to write the appropriate code to interface between the MCU and the RF device.
This design uses the MSP430F6736 device to implement a highly integrated single-chip energy metering (meter) solution. Hardware and software design files are provided to calculate various parameters of single-phase energy metering such as RMS current and voltage, active and reactive power and charge, power factor and frequency.
System example showing how to build a WIFI node by integrating the TM4C1294 MCU and CC3100 network processor from the TM4C product family. This reference example demonstrates the function of remotely controlling the operating status of an MCU through the Internet.
TIDM-ULTRASONIC-FLOW-TDC is a reference design for an ultrasonic flow meter (water, gas or heat meter) with LCD, using a time-to-digital converter and an ultra-low power MCU. The solution includes optimized leak detection, low power consumption and small form factor, which are important requirements for water, heat and gas meter applications. The design also includes a high-efficiency DC-DC converter for system power supply.
In battery-powered water meters, battery life over several years is key. One of the challenges is to continuously measure water flow information while using as little power as possible. The Scan I/F sensing peripheral integrated on the ultra-low power MSP430 microcontroller solves this problem. In the water meter design, the scan interface coupled to the LC rotation detection sensor continuously detects the rotation of the thruster while the rest of the microcontroller is in a low-power sleep mode. This reference design demonstrates how to use the scan interface to achieve ultra-low power consumption (versus the same detection method using external circuitry).