This camera design demonstrates the smallest solution size for a 1.3-megapixel automotive camera. Only a single coaxial cable connection provides digital video, power, camera control and diagnostics. The output video format is 10-bit up to 100MHz or 12-bit up to 75MHz.
Digital MEMS microphone expansion board based on MP34DT01-M for STM32 Nucleo
This reference design enables a complete power-supply solution for powering Xilinx® Kintex®-7 series field-programmable gate array (FPGA) using Maxim's power-supply solutions.
16-cell EV/HEV high current active solution using the latest automotive battery management monitor and protector bq76PL455A-Q1. It combines the high level of integration and accuracy of the bq76PL455A-Q1 with a bidirectional DC-DC cell balancer to provide a high-performance battery management solution for high-capacity battery packs. This allows any 16-cell input to be charged or discharged as required at up to 5A, and modules can be stacked up to 1300V.
The TIDA-00399 design implements a complete power supply solution for SSDs in an M.2 form factor. The TPS22954 load switch is used to limit inrush current, eliminating the need for a separate monitoring circuit at the system input. This design has been tested and includes GUI, demo and user guide.
Multifunctional CNC power supply design based on STM32 (schematic diagram, PCB, program source code, etc.).
You can use the Bluetooth and MSP430 audio source reference designs to create a variety of applications for low-end, low-power audio solutions, including toys, projectors, smart remote controls, and a variety of audio playback accessories. This reference design is an affordable audio implementation with complete design files, allowing you to focus on application and end product development. This reference design is also available with the TI Bluetooth Stack.
Contains the design principles of four-wing aircraft
The Vienna rectifier power topology is used in high power three-phase power factor (AC-DC) applications such as off-board EV chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller (MCU) to control a power stage. Monitoring and control of Vienna rectifiers is also implemented based on HTTP GUI pages and Ethernet support (F2838x only). The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C2000 microcontroller to control a Vienna rectifier. The Vienna rectifier power topology is used in high power three-phase power factor (AC/DC) applications such as off-board electric vehicle (EV) chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller to control a power stage. The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C200-MCU to control a Vienna rectifier. Learn more about what C2000 MCUs can offer for electric vehicle applications
TIDA-00281 TI reference design is a three-phase brushless DC motor driver for 48V automotive applications. The board is designed to drive motors in the 1kW range and can handle currents up to 30A. This design uses analog circuitry used with the C2000 LaunchPad to rotate a three-phase BLDC motor without position feedback from Hall effect sensors or quadrature encoders.
This reference design implements Class 0.1 split-phase energy metering using a high-performance, multi-channel analog-to-digital converter (ADC). An independent ADC samples the current transformer (CT) output at 8kHz and measures the current and voltage at each branch of the main AC power supply. The reference design achieves high accuracy over a wide input current range (0.05 – 100 amps) and supports high sampling frequencies when necessary to enable advanced power quality features such as independent harmonic analysis. Using a stand-alone ADC to sample the CT output gives designers more flexibility in selecting a metrology microcontroller than an integrated SoC and application-specific dedicated products. This reference design uses the SimpleLink™ ARM Cortex-M4 host microcontroller to calculate energy metering parameters. The design can also use an ADC sampling rate of 32ksps by enabling only a subset of the total energy measurement parameters.