TWRPI-MMA6900 is a towerSystem plug-in board containing Xtrinsic MMA6900Q inertial sensor for automotive and industrial applications.
15W 12V Offline Flyback Converter Using the MAX17595
The Palo Verde reference design (MAXREFDES33#) is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over a 4.5V to 60V input voltage range and delivering output current up to 300mA at 3.3V . Test results and hardware files provide complete documentation for designs. The board is also available for purchase.
A high-voltage (30 V) DAC powered by a low-voltage (3 V) supply generates the tuning signal for the antenna and filter
TI's TIDC-EVSE-WIFI validated reference design details how to implement a J1772-compliant Level 1 and Level 2 Electric Vehicle Service Equipment (EVSE) solution with added Wi-Fi® functionality. The CC3100 network processor allows highly embedded devices such as EVSE to easily connect to existing wireless networks or directly to the device. By integrating this functionality into the EVSE, the design enables remote power monitoring and control of the charge status of connected electric vehicles.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
The PMP20410 is a synchronous 4-switch buck/boost converter reference design using the LM5175 controller for battery charger applications. Output voltages from 1V to 10V can be selected over a current range of 13A to 28A by using a trim resistor on the FB pin with a bias voltage of 0.2V to 3.1V. This reference design also uses the nonsynchronous boost regulator LMR62014 to provide bias voltage for the LM5175 operating in 2.7V input voltage mode. The current mode controller has built-in LM5175 pulse-by-pulse current limiting function. This board includes enable, sync, and power-good functions. This reference design supports resistive heating elements with resistances ranging from 0.1Ω to 0.5Ω, allowing 80W of power to be supplied.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity.
The MAX17681/MAX17681A is a high-voltage, highefficiency, iso-buck DC-DC converter designed to provide isolated power up to 5W. The device operates over a wide 4.5V to 42V input and uses primary-side feedback to regulate the output voltage .
Many devices with rechargeable batteries use USB power to recharge the batteries while they are connected. This application note describes the power available from USB and how it can be used to charge batteries, including circuits and some hints.
7 W Wide-Range Input, Dual Output, Non-Isolated Flyback Converter Using LinkSwitch-XT2 900 V (LNK3696P)
Power over Ethernet (PoE) is a technology that allows network cables to deliver power to a powered device (PD) through power-sourcing equipment (PSE) or midspan, and has many advantages over traditional methods of delivering power.
This display reference design is created for a variety of ultra-portable display applications in the consumer, wearables, industrial, medical and Internet of Things (IoT) markets. This design includes the DLP2000 chipset, which consists of the DLP2000 .2 nHD DMD, DLPC2607 display controller, and DLPA1000 PMIC/LED driver. This small form factor reference design works with production-ready optical engines and low-cost applications processors supporting 8/16/24-bit RGB parallel video interfaces.