Many devices with rechargeable batteries use USB power to recharge the batteries while they are connected. This application note describes the power available from USB and how it can be used to charge batteries, including circuits and some hints.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
A high-voltage (30 V) DAC powered by a low-voltage (3 V) supply generates the tuning signal for the antenna and filter
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity.
The Palo Verde reference design (MAXREFDES33#) is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over a 4.5V to 60V input voltage range and delivering output current up to 300mA at 3.3V . Test results and hardware files provide complete documentation for designs. The board is also available for purchase.
The MAX17681/MAX17681A is a high-voltage, highefficiency, iso-buck DC-DC converter designed to provide isolated power up to 5W. The device operates over a wide 4.5V to 42V input and uses primary-side feedback to regulate the output voltage .
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Power over Ethernet (PoE) is a technology that allows network cables to deliver power to a powered device (PD) through power-sourcing equipment (PSE) or midspan, and has many advantages over traditional methods of delivering power.
The MAX17596 is a peak-current-mode controller for designing wide input-voltage flyback regulators.
The MAX17574, high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operates over a 4.5V to 60V input. The converter can deliver up to 3A current.
The MAX17509 integrates two 3A internal switch stepdown regulators with programmable features. The device can be configured as two single-phase 3A power supplies or as one dual-phase, single-output 6A power supply.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
The MAX17595 is a peak-current-mode controller for designing wide input-voltage flyback regulators.
When people want portable music, they usually rely on battery-powered audio devices. With a bit of engineering blood (or curiosity) running in your veins, it is not difficult to build a wireless Bluetooth® stereo audio system that can be controlled with any device that has a Bluetooth connection and a music player.
This 80W telecom hot-swap reference design is immune to 150V input-voltage transients and 16ms power dropouts. Additional features include -32V to -72V operation, two-diode OR-ing input, and an inrush current that is ≤ 1.5 times the full -load current. Included are a detailed schematic, representative PCB layout, bill of materials, waveforms detailing actual performance at startup, -150V input transient, and full-load holdup at power loss.
The MAX15051 is a high-efficiency switching regulator that delivers up to 4A load current at output voltages from 0.6V to (0.9 x VIN).
This reference design shows how to use a MAX5060 current-mode, step-down power-supply controller to implement lossless current sensing for high-current applications. In this design, the series resistance (DCR) of the inductor is used for current sensing to avoid power loss in the current-sense resistor.
The MAXREFDES1252 is a No-Opto Flyback converter that delivers up to 1.2A at 14.5V from a 18V to 54V supply voltage. It is designed for industrial equipment that needs isolated voltage from wide input supply voltage.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.