Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Supercapacitors are increasingly being used in a number of applications in electric vehicles, transportation equipment, industrial machinery and utility grids. In the MAXREFDES1215, a supercapacitor-based energy harvester is demonstrated using the MAX17220. The circuit uses a supercapacitor to provide backup energy. The first stage of the circuit charges a supercapacitor, and the second stage of the circuit regulates the voltage from the supercapacitor to supply various sensors with a steady output voltage. In this system, the MAX17220 is used for regulating the output voltage from the supercapacitor.
Power over Ethernet (PoE) is a technology that allows network cables to deliver power to a powered device (PD) through power-sourcing equipment (PSE) or midspan, and has many advantages over traditional methods of delivering power.
This document details the MAXREFDES113# subsystem reference design, a 17V to 36V input, 12V output, flyback isolated power supply capable of 20W. Design files and test results are included. Hardware is available for purchase.
The MAX16990 is a high-performance, current-mode, pulse-width mode (PWM) controller with 4μA (typ) shutdown current for wide input-voltage range boost converters/single-ended primary-inductor converters (SEPIC)
This reference design is built to enable multiple room comfort control in connected HVAC systems. Sensing temperature, humidity, and pressure allows independent monitoring and air-flow adjustment in each zone. This TI Design converts a constant air volume (CAV) into a variable air volume (VAV) system. Collected data can be transmitted wirelessly to the smart thermostat or gateway. Onboard sensors can be employed to allow predictive maintenance, shorten technical troubleshooting time, and reduce overall energy consumption. Long battery life allows the smart damper to run for many years without the need to spend time and money on battery replacement.
BGU8063 Evaluation Board
The 15-watt single-coil fixed-frequency wireless charging transmitter reference design features the WCT10xx transmit controller IC and integrates all the features required for a Wireless Power Consortium (WPC) Qi-compliant wireless power transmitter design.
This reference design provides application circuit and simulation examples of the TPD7106F, whose features include power supply reverse connection, charge pump circuit, etc.
This document describes a circuit that uses three MAX17541G buck converters and one MAX17504 step-down DC-DC converter. The circuit is arranged so that each buck converter uses the same input with four separate outputs. Each output has a different power specification. The MAX17541G regulator and features are given first, followed by the MAX17504 features.
The TIDEP0066 reference design uses TI's Embedded Speech Recognition (TIesr) library to highlight the speech recognition capabilities of the C5535 and C5545 DSP devices; and based on successful keyword collection, indicates how to run speech to print pre-programmed keywords on the C5535eZdsp OLED screen Trigger example. This design also describes the steps to customize trigger words.
The evaluation board supports the MC33810EK automotive engine control IC for injectors, solenoids, lights, and relays.
The MAXREFDES1123 is a compact boost power-supply design for high-voltage applications with low current requirements where extremely low cost and small size are top priorities.
The FDC2214 proximity and capacitive sensing design demonstrates how to use TI's capacitive sensing technology to sense and detect the presence of various objects. This design is a complete hardware and firmware solution. The firmware processes data from a proximity sensor and two capacitive touch buttons via the FDC2214 to determine whether an object is within the target sensing area. A dedicated colored LED lights up whenever the device detects an object in close proximity to the board or detects a button press. This design is powered by one AA battery.
KITFS85FRDMEVM is a development board for the 12V automotive market. It is designed to provide the best performance and reference layout.