This development platform targets Ethernet/IP slave device communications, enabling designers to implement the Ethernet/IP communications standard in multiple industrial automation devices. It enables low-footprint designs with minimal external components and best-in-class low-power performance.
The PMP5242 reference design uses the UCC28810 in a single-stage, PFC-SEPIC configuration to drive a 22W LED load. This supply can operate from an input ranging from 85VAC up to 265VAC. It is capable of driving LED strings from 156V up to 208V at a fixed current of 110mA with efficiency over 89%.
The TIDA-00786 is a small size brushed DC motor controller with fixed 100% duty cycle speed input and variable current regulation. The DRV8871's integrated current sensing capability enables the design to utilize standard potentiometers, allowing the user to quickly change current limit levels in motors powered by 12 to 24V inputs.
1.44 W Non-Isolated Buck Converter Using LinkSwitch-TN2 900 V (LNK3294G/P)
The FRDM-HB2001-EVM evaluation kit allows users to practice using all features of the MC33HB2001 H-bridge device with FRDM-KL25z and SPIGen software.
Due to its simplicity and low cost, the flyback converter is the preferred choice for low-to-medium isolated DC-DC power-conversion applications. However, the use of an optocoupler or an auxiliary winding on the flyback transformer for voltage feedback across the isolation barrier increases the number of components and design complexity. The MAX17690 eliminates the need for an optocoupler or auxiliary transformer winding and achieves ±5% output voltage regulation over line, load, and temperature variations.
Maxim's Power Amplifier Biasing (MAXREFDES39#) features a PA Bias circuit with the flexible Programmable Mixed Signal I/O (PIXI™) product, the MAX11300. The 2-stage amplifier design biases a 15W, LDMOS PA implemented with unprecedented simplicity, and is capable of biasing many existing PAs. Design files are available and boards are available for purchase.
The MAXREFDES1227 is a miniature 12V output isolated power supply that can deliver up to 2A load current. The design employs the MAX17596 peak-current-mode controller in discontinuous-conduction mode (DCM) flyback topology running at 125kHz. The input voltage range of MAX17596 is 4.5V to 36V; however, an extra bias winding from the transformer is used to power the controller. This allows an input operating voltage of up to 60V for this design.
In battery-powered water meters, battery life over several years is key. One of the challenges is to continuously measure water flow information while using as little power as possible. The Scan I/F sensing peripheral integrated on the ultra-low power MSP430 microcontroller solves this problem. In the water meter design, the scan interface coupled to the LC rotation detection sensor continuously detects the rotation of the thruster while the rest of the microcontroller is in a low-power sleep mode. This reference design demonstrates how to use the scan interface to achieve ultra-low power consumption (versus the same detection method using external circuitry).
TEA1892TS GreenChip SR Controller add on board for Flyback
10 W Adapter for Portable Audio Players with Latching Overvoltage and Over-Temperature Shutdown Protection
When it is necessary to plug in a board into a system that is currently powered, it is critical to control the inrush current to prevent damage/system fault conditions. This application provides a simple circuit to achieve this function as well as an easy method for resetting the system and monitoring against temperature issues.
This application note presents a reference design for a nonisolated LED driver intended to operate directly from a 400V DC input. The design drives a string of 27 WLEDs (white LEDs) or, optionally, 6 amber LEDs at 400mA. The topology is a discontinuous flyback with a transformer. The MAX16801 HB (high brightness) LED controller is featured.
The ASL5015EVBMST is the main evaluation board for NXP's Matrix LED Controller (MLC) ASL5015SHN, which enables evaluation of external lighting systems.
This 65 W USB-PD type-C PPS charger reference design uses Infineon's EZ-PD™ PAG1S and PAG1P P controllers, EZ-PD™ CCG7D PD controller, and Infineon's high-voltage CoolMOS™ superjunction MOSFETs. The solution complies with DoE Level 6 international energy efficiency standards and passes conducted emissions testing in accordance with the EN 55032 B standard.