The requirements for higher quality and performance in digital SLR cameras, DSC, and other 2S Li+ battery electronic equipment is increasing.
Cruelfox, a forum expert, has updated his article to share with you an experimental idea of a CNC experimental power supply. The power supply uses two domestic chips, with a 3,000-word detailed explanation. He briefly talked about the first experimental power supply he made, whose shell was an aluminum medicine box and whose knob was a toothpaste cap. He mainly talked about the ideas and principles of the current mini PCB pocket version.
The MAXREFDES1219 is an integrated smart solution for the 1-cell Li+ battery pack that provides a linear charger
The MAXREFDES1277 reference design enables quick evaluation of the MAX17852/53 for 48V two-Wheeler battery management applications (BMS)
The led-panel originated from the author's desire to use a donated roll of white LEDs to break out 48 LEDs on a compact board. Its output power should reach about 4W. It has no controller and is purely for testing a set of LEDs to see if they would be suitable for some form of lighting attached to a gooseneck.
CLLLC resonant DABs with bidirectional power flow capabilities and soft switching characteristics are an ideal candidate for hybrid electric vehicle/electric vehicle (HEV/EV) on-board charger and energy storage applications. This design demonstrates the use of a C2000™ MCU to control this power topology in closed voltage and closed current loop modes. The hardware and software available for this design can help you
reduce your time to market.
The TIDEP-0092 reference design provides a foundation for short-range radar (SRR) applications using the AWR1642 evaluation module (EVM). This design allows the estimation and tracking of the position (in the azimuthal plane) and velocity of objects in its field of view up to 80 m, travelling as fast as 90kmph. The AWR1642 is configured to be a multi-mode radar, meaning that, while it tracks objects at 80m, it can also generate a rich point cloud of objects at 20m, so that both cars at a distance, and smaller obstacles close-by can be detected. Learn more with the TI Resource Explorer for Short Range Radar.
Interleaved Continuous Conduction Mode (CCM) Totem Pole (TTPL) Bridgeless Power Factor Correction (PFC) using high-bandgap GaN devices is an attractive power topology due to its high power efficiency and reduced size. This design illustrates the use of a C2000™ MCU and LMG3410 GaN FET module to control this power stage. To improve efficiency, this design uses adaptive dead time and phase shedding methods. Nonlinear voltage compensators are designed to reduce overshoot and undershoot during transients. This design chooses a software phase locked loop (SPLL) based approach to accurately drive the totem pole bridge. The hardware and software used in this design help reduce your time to market.
This reference design outlines how to implement a three-stage, three-phase SiC-based AC/DC converter with bidirectional functionality. The high switching frequency of 50kHz reduces the size of the magnetic components in the filter design and therefore increases the power density. SiC MOSFETs with switching losses enable higher DC bus voltages up to 800V and lower switching losses, with peak efficiencies greater than 97%. This design can be configured as a two-stage or three-stage rectifier. For design information on DC/AC implementation, see TIDA-01606 . The system is controlled by a single C2000 microcontroller (MCU), TMS320F28379D, which generates PWM waveforms for all power electronic switching devices in all operating modes.
The Vienna rectifier power topology is used in high power three-phase power factor (AC-DC) applications such as off-board EV chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller (MCU) to control a power stage. Monitoring and control of Vienna rectifiers is also implemented based on HTTP GUI pages and Ethernet support (F2838x only). The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C2000 microcontroller to control a Vienna rectifier. The Vienna rectifier power topology is used in high power three-phase power factor (AC/DC) applications such as off-board electric vehicle (EV) chargers and telecom rectifiers. Rectifier control design can be complex. This design illustrates the use of a C2000™ microcontroller to control a power stage. The hardware and software used with this design can help you reduce your time to market. The Vienna rectifier power topology is used in high-power three-phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to use a C200-MCU to control a Vienna rectifier. Learn more about what C2000 MCUs can offer for electric vehicle applications
Li-Ion battery formation and electrical testing require accurate voltage and current control, usually to better than ±0.05% over the specified temperature range. This reference design proposes a solution for high-current (up to 50 A) battery tester applications supporting input (bus) voltages from 8 V–16 V and output load (battery) voltages from 0V–5V. The design utilizes an integrated multi-phase bidirectional controller, LM5170, combined with a high precisiondata converters and instrumentation amplifiers to achieve charge and discharge accuracies of 0.01% full scale. To maximize battery capacity and minimize battery formation time, the design uses highly-accurate constant current (CC) and constant voltage (CV) calibration loops with a simplified interface. All key design theories are described guiding users through the part selection process and optimization. Finally, schematic, board layout, hardware testing, and results are also presented.
This reference design demonstrates how our single-chip millimeter wave (mmWave) technology can be leveraged for reliable long-distance sensing in traffic monitoring and other applications. This reference design can use the IWR1642BOOST Evaluation Module (EVM) or the IWR1843BOOST Evaluation Module (EVM) and integrate the complete radar processing chain onto the IWR1642, IWR6843 or IWR8143 device. The processing chain includes analog radar configuration, analog-to-digital converter (ADC) capture, low-level FFT processing, and high-level clustering and tracking algorithms. This reference design is designed to be built on top of our mmWave SDK for a centralized software experience that includes APIs, libraries and tools for evaluation, development and data visualization.