MAXREFDES1255 is a 4-switch buck-boost converter that gives a positive step-up/stepdown output voltage.
This BoosterPack package contains an "EM Adapter BoosterPack". The purpose of this EM adapter board is to provide an easy-to-use bridge between any TI MCU LaunchPad and various TI RF Evaluation Modules (EMs), such as the CCxxxx Low Power RF Evaluation Modules. No specific software is provided, so it is the user's responsibility to write the appropriate code to interface between the MCU and the RF device.
The TIDA-00136 reference design is a high-speed serial video interface that allows remote automotive WVGA TFT LCD displays using the OpenLDI (LVDS) interface to be connected to a video processing system. This design uses TI's FPD-Link II SerDes technology to transmit uncompressed video data over shielded twisted pair or coaxial cable. Examples of applications include rear-seat entertainment systems, automotive instrument clusters and head unit displays. This design combines the DS99R421Q1-EVK and DS90UR124-Q1 boards to form the solution.
The X-NUCLEO-SNK1M1 expansion board allows evaluating the features of TCPP01-M12 and the USB Type-C overvoltage protection for VBUS and CC lines suitable for Sink applications.
A portable device using the circuit of Figure 1 derives power from the USB bus. The MAX1811 uses USB power charges a lithium-ion (Li+) battery at, USB compatible, 100mA or 500mA rates. Battery power is then stepped up with the MAX1797 to create the 5V supply rail. The 5V supply rail is then stepped down with the MAX1837 to create the 3.3V supply rail. The circuit includes a low battery shutdown to protect the Li+ battery and offers a convenient charging LED.
22W MP-A11 single coil wireless charger
This reference design implements and measures a complete 120MHz high-bandwidth optical front-end consisting of a high-speed transimpedance amplifier, a fully differential amplifier, and a high-speed 14-bit 160MSPS ADC with JESD204B interface. The design provides hardware and software to evaluate the system's response to high-speed optical pulses generated by the included laser driver and diode, suitable for applications with optical time domain reflectometry (OTDR).
This analog front end (AFE) design shows how to connect two or more Σ-Δ ADCs for simultaneous sampling and how to expand the number of input channels to provide maximum flexibility. Precision current measurement is achieved by connecting the AFE to a current transformer (CT) and a Rogowski coil. Likewise, accurate voltage measurements are achieved using resistive voltage dividers without and with isolation amplifiers. The AFE can be configured to measure unipolar or bipolar inputs. The required power is provided onboard. Additionally, diagnostics can be integrated into one design, as shown in TIDA-00810.
The MAX16974/MAX16975/MAX16976 high-performance DC-DC converters are standard buck controllers designed for automotive applications. This application note explains how to optimize the layout of these ICs. An example layout is provided at the end of the document.
Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off board EV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers (MCUs). It also enables monitoring and control of Vienna rectifier based on the HTTP GUI page and Ethernet support(F2838x only).The hardware and software available with this design helps accelerate your time to market.Vienna rectifier power topology is used in high power three phase power factor correction applications such as off board Electric Vehicle Charging and telecom rectifiers. This design illustrates how to control a vienns rectifier using C2000 Microcontroller. Vienna rectifier power topology is used in high power three phase power factor (AC-DC) applications such as off-board electric vehicleEV chargers and telecom rectifiers. Control design of the rectifier can be complex. This design illustrates a method to control the power stage using C2000™ microcontrollers. The hardware and software available with this design helps accelerate your time to market.The Vienna rectifier power topology is used in high power three phase power factor correction applications such as off-board electric vehicle charging and telecom rectifiers. This design illustrates how to control a Vienna rectifier using C200-MCU.
How to use the 16-bit voltage output DAC AD5542A/AD5541A to achieve high-precision level setting
The efficiency and diagnostic capabilities required for automotive emergency call (eCall) systems create unique requirements for the audio subsystem, such as speaker diagnostics and low power consumption. This TI reference design shows how TI's automotive dual-channel audio codec (TLV320AIC3104-Q1) and Class D audio amplifier (TAS5411-Q1) can be used in eCall applications.
This freedom board covers MC12XSF and MC12XS6 families and ease its usage thanks to its quick evaluation tolls (Spigen or KDS) with different Kinetis MCU.
This TI reference design provides a low-component-count, low-cost solution for a 4 to 20mA loop-powered resistance temperature detector (RTD) temperature transmitter. The design utilizes the on-chip smart analog combination module in the MSP430FR2355 MCU to control the loop current, thus eliminating the need for a separate DAC. The design achieves 12-bit output resolution and 6µA output current resolution. The design incorporates reverse polarity protection as well as IEC61000-4-2 and IEC61000-4-4 protection on the loop power input.