This compact USB dongle design combines a MAX2165 direct-conversion tuner and a DMB-TH demodulator. The design converts a UHF signal (470MHz to 858MHz) to a MPEG-2 transport stream. Then the USB interface enables video viewing on a laptop or desktop computer.
The MAX3541 is an integrated, single-conversion terrestrial tuner IC for DVB-T and PAL. The device is designed to convert input signals in the VHF-Low, VHF-High, and UHF bands to an IF frequency of 36MHz. The MAX3541 is designed for television, analog/digital terrestrial receiver, and digital set-top box applications.
This module uses the highly integrated MAX2830 RF transceiver. It is a complete RF front-end solution that meets the WLAN IEEESM 802.11b/g standard. The transmitter can deliver more than 15dBm Tx power at EVM < 5.6% with a 54Mbps OFDM 802.11g signal. The receiver can provide an IQ signal EVM
This reference design covers the design of a transmitter inside a 900MHz full-duplex radio using the MAX2902 single-chip transmitter. The MAX2902 is designed for use in the 868MHz to 915MHz frequency band, and complies with FCC CFR47 part 15.247 902MHz to 928MHz ISM band specifications. The reference design is capable of delivering more than +19dBm with V CC = 2.9V and I CC = 170mA, and +20dBm with V CC = 3.3V and I CC = 190mA, while meeting 14dB of CNR (1.22Mbps BPSK) at 10:1 VSWR (all angles).
This reference design is a commercial Half-NIM DVB-S tuner that uses Maxim's MAX2120 satellite tuner IC. The reference design connects to the motherboard through a 12-pin connector. The downconverted satellite signal from the LNB is supplied to an active, discrete loop-through, which splits the signal into two paths. One signal goes to the MAX2120 and the other provides an additional output from the STB.
The WiBro™ reference design is a complete RF front-end solution designed to meet requirements for the WiBro 2.3GHz to 2.4GHz mobile WMAN (Wireless Metropolitan Area Network) standard. This reference design uses the MAX2837 direct-conversion transceiver and demonstrates a complete WiBro single-band RF-to-baseband solution. It serves as a platform for designs in multiple form factors such as CardBus, miniPCI, and custom CPE modules. The design can be easily adapted for WiBro-only 3.3V laptop applications, or WiBro- only 5.0V CPE applications.
The MAX2769 is a low-cost, single-conversion, low-IF frequency GPS receiver that provides 115dB cascaded gain and a 1.4dB cascaded NF. The MAX2769 GPS USB reference design, working together with the GeotateSM GPS software installed in a PC or laptop, forms a complete low-cost high-sensitivity GPS solution. The reference design provides high-precision position information with quick acquisition times. It demonstrates the excellent capabilities of the MAX2769 in a full GPS receiver design.
This reference design is a complete RF front-end solution designed to meet the WLAN IEEE® 802.11b/g standard. Using the MAX2830 RF transceiver, the design is capable of accommodating full range of 802.11g OFDM data rates (6, 9, 12, 18, 24, 36, 48, and 54Mbps) and 802.11b QPSK data rates (1, 2, 5.5, and 11Mbps). This solution offers high performance, small size, and low BOM cost.
This reference design is a complete RF front-end solution for a GPS receiver using Maxim's MAX2769 GPS receiver chip. The MAX2769 is a low cost, single conversion, low IF GPS receiver that offers two integrated LNAs with different specifications, I/Q channel filters with variable bandwidth and order, and a digital IF output that supports 1-bit and 2-bit operation. This reference design offers high performance, small size, and low BOM cost.
The MAX3580 DVB-T reference design meets NorDig 1.0.3 and MBRAI requirements. This NIM design includes the MAX3580 direct-conversion tuner and a DVB-T demodulator/decoder. A discrete, active loop-through with low power consumption and low cost is included. Target applications include digital televisions, digital terrestrial set-tops, laptop televisions, automotive televisions, and USB peripherals.
This design idea shows how you can design a simple wireless temperature-monitoring system with data-logging capabilities by using a local temperature sensor and an ASK transmitter and receiver pair.
Pasadena (MAXREFDES31#) is a highly efficient, flyback, 3.3V and 5V Class 4 powered device (PD) with a 40V to 57V auxiliary input. The design features the MAX5969B as the controller. The MAX5974A controls current-mode PWM converters and provides frequency foldback for both the auxiliary input and power-over-Ethernet (PoE) applications. The design is a high-performance, compact, IEEE® 802.3af/at compliant, cost-efficient solution for a PD with power level up to Class 4. The design can also support the auxiliary-input to provide approximately 21W output power.
Maxim's Power Amplifier Biasing (MAXREFDES39#) features a PA Bias circuit with the flexible Programmable Mixed Signal I/O (PIXI™) product, the MAX11300. The 2-stage amplifier design biases a 15W, LDMOS PA implemented with unprecedented simplicity, and is capable of biasing many existing PAs. Design files are available and boards are available for purchase.
The configurable development system (CDS) supports a wide range of NXP processors built on Power Architecture technology.
The MPC8272ADS board is designed to aid hardware and software developers of the PowerQUICC II family by providing an evaluation platform for MPC8272/48 derivatives in the 516-pin PBGA (ZQ/VR) package.
NXPThe TWR-P1025 processor module is also available as a standalone single-board computer (SBC) development platform or as a towerSystem rapid prototyping development platform.
The MPC-LS-VNP-EVB is an evaluation and development board designed for automotive network processing applications and is suitable for advanced gateway development to deliver new vehicle services and edge data analytics.
The QorIQ ® P5040 Reference Design Board (P5040-RDB) is a flexible system supporting the quad-core P5040 processor.
NXPThe P1010 RDB is a highly integrated reference design board that can help you get to market faster.
CWH-CTP-CTX10-YE is a removable debugger header for QorIQ LS.