The project uses RSL10 to build a sugar glider health monitoring system. With good exercise and diet, my little jelly (sugar glider) can grow up healthily.
The work is mainly based on smart watches as a product that contributes to mine operations. The shape of [RSL10-SENSE-GEVK] is perfect for making a watch. All the onboard peripherals are utilized. The watch will collect data every once in a while and store it in the onboard external Flash. A total of fourteen days of historical data can be stored. If the power consumption is reasonably designed, it can Replace the button battery every two months. Normally worn in the normal mode, you can enter the downhole mode by pressing the button. In the downhole mode, the surrounding environment will be detected. When the environment reaches a bad situation, it will enter the alarm state. At the same time, when the person going down the pit feels uncomfortable, he can long press the button to enter the call for help state.
With this design, users of the OV788 ultra-low-power video compression chip can easily implement real-time streaming of audio and video data over Wi-Fi®. It demonstrates a single-chip implementation on the SimpleLink™ CC3200 Wi-Fi wireless microcontroller that supports RTP video streaming and Wi-Fi connectivity via 802.11 b/g/n from any smartphone, tablet or computer on the local network network for data transmission. This design implementation takes advantage of the CC3200 Internet-on-a-chip™ solution's ease of debugging to Wi-Fi networks and advanced low-power modes, making it ideal for a variety of Internet of Things (IoT) applications, such as battery-powered in smart homes. Intrusion cameras, door locks, video doorbells and 360 multi-camera.
TIDA-00827 is an integrated sensor-based BLDC motor controller reference design for low-power, battery-powered brushless DC motor applications. The 8 to 35V operating voltage range supports 3S to 6S lithium polymer battery power supplies. Specific applications include camera heads, low-power fans and robots. The motor controller consists of the MSP430G2353 16-bit, ultra-low power microcontroller and the DRV8313 highly integrated 2.5A triple half-bridge driver. The MSP430G2353 utilizes Hall sensor-based communication feedback to provide the correct drive voltage to the motor through the DRV8313. Onboard potentiometers and buttons provide a simple interface to control the motor.
Based on STM8S003K3 microcontroller, it has alarm and chime functions and automatic light sensing function.
The PMP10733 uses the LM5160 in a Fly-Buck-Boost topology with the primary side set to a negative voltage. Setting the primary side to a negative voltage reduces the turns ratio of the transformer and therefore allows for better line and load regulation. The primary and secondary voltages are set to negative 15V and positive 15V respectively. The maximum operating current on the primary and secondary voltage rails is set to 150mA. The switching frequency is set to 200kHz.
12 V - 5 W isolated flyback converter based on VIPer122LS
The MicroByte is a tiny console capable of running games from the NES, GameBoy, GameBoy Color, Game Gear and Sega Master systems, with all components designed into this 78 x 17 x 40 mm package.
This reference design functions from a base of silicon carbide (SiC) MOSFETs that are driven by a C2000 microcontroller (MCU) with SiC-isolated gate drivers. The design implements three-phase interleaving and operates in continuous conduction mode (CCM) to achieve a 98.46% efficiency at a 240-V input voltage and 6.6-kW full power. The C2000 controller enables phase shedding and adaptive dead-time control to improve the power factor at light load. The gate driver board (see TIDA-01605) is capable of delivering a 4-A source and 6-A sink peak current. The gate driver board implements a reinforced isolation and can withstand more than 100-V/ns common-mode transient immunity (CMTI). The gate driver board also contains the two-level turnoff circuit, which protects the MOSFET from voltage overshoot during the short-circuit scenario.
This year, Supercon badges become analog badges! (Or at least pretend to be pretty convincing.) Taking inspiration from the fluorescent oscilloscopes of the past, the 2023 Vectorscope badge is part analog audio playground, part art project, and all about prototyping. Who doesn't love the warm glow and lovely green fluorescence of an old Tektronix tube scope?
The TIDA-00792 TI Design provides monitoring, balancing, primary protection and gauging for a 12 to 15 cell lithium-ion or lithium-iron phosphate based batteries. This board is intended to be mounted in an enclosure for industrial systems. The reference design subsystem provides battery protection and gauging configuration with parameters avoiding code development and provides high side protection switching to allow simple PACK- referenced SMBus communication for battery status even while protected.
Texas Instruments' ZLLRC reference design enables simple and direct control of lights connected to a ZigBee Light Link network. It is designed to control a subgroup of lights on that network, such as the lights in a room in your home. It creates its own group containing lights that have touch connections to it. These lights can be added/removed later. It has 14 buttons to control status (on/off), hue, saturation, level, target selection and scene. ZLLRC is supported by Z-Stack Lighting version 1.0.2 and higher. It is based on the CC2530 system-on-chip (SoC) with integrated ZigBee radio. It connects to the onboard PIFA PCB antenna through an integrated balun. To extend battery life, the TPS62730 DCDC converter can be used to convert the CR2025 battery voltage to 2.1 V.
The MAX17506 high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated high-side MOSFET operates over a 4.5V to 60V input. The converter can deliver up to 5A and generates output voltages from 0.9V up to 0.9 x VIN. The feedback (FB) voltage is accurate to within ±1.4% over -40°C to +125°C. The MAX17506 uses peak current-mode control and can be operated in the pulse-width modulation (PWM), pulse-frequency modulation (PFM), and discontinuous conduction mode (DCM) control schemes.
ST1S12XX based 0.7 A/1.2 V synchronous buck converter with enable function
Ultra-low-cost EVB for MPC5744P. Evaluate the MPC5744P for functional safety and chassis-oriented automotive and industrial applications.