The Novato reference design (MAXREFDES16#) is a 16-bit, high-accuracy, loop-powered temperature transducer that transmits temperature information from a remote object to the central control unit over a 4–20mA current loop and using the highway addressable remote transducer (HART) communication protocol.
Maxim's Santa Cruz (MAXREFDES23#) reference design is the world's smallest IO-Link® light sensor compliant with IEC 61131-9. The Santa Cruz has six different types of sensors: ambient light (clear), red, green, blue, infrared, and is also a temperature sensor. The entire design fits onto a 6.5mm x 25mm printed circuit board (PCB).
The Petaluma (MAXREFDES30#) subsystem reference design is a cost optimized, high-speed and high-accuracy analog measurement solution for three-phase power monitoring applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
The Alameda (MAXREFDES24#) subsystem reference design features four dense, highly accurate analog outputs in a compact, galvanically isolated form factor. Each channel provides current or voltage. This design uniquely fits in programmable logic controllers (PLC), distributed control systems (DCS ), and other industrial applications. Hardware, firmware design files, and lab measurements are provided for rapid prototyping and development. The board is also available for purchase.
Maxim's MAXREFDES36# reference design is an IO-Link, low-power, 16-channel digital input hub compliant with IEC 61131-9. It contains two octal digital input serializers, an IO-Link transceiver and efficient step-down converter. The entire design fits in a standard DIN rail printed circuit board (PCB) holder.
The MAXREFDES72# reference design is a software configurable interface adapter that allows Pmod boards to be connected to Arduino headers. This board addresses the level shifting and pin multiplexing challenges associated with adapting these different interfaces.
The MAXREFDES74# is a precision data acquisition system which includes an 18-bit, 500ksps, ±5V SAR analog-to-digital converter (ADC), the MAX11156, and an 18-bit, 3µs settling time, ±2 LSB (max) INL digital-to-analog converter (DAC), the MAX5318. The data acquisition system can be used as a stand-alone evaluation board or as a mezzanine card to ZedBoard™, a development board for the Xilinx ® Zynq ® -7000 All Programmable SoC.
The MAXREFDES61# reference design ushers in the era of Industry 4.0. With a complete analog front-end for the next generation of ultra-small programmable logic controllers, this design meets the higher resolution and higher voltage needs of industrial control and industrial automation applications, while consuming minimal power and space. This high-performance system features four channels of analog input, a complete, efficient power-supply system and on-board processing. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
The MAXREFDES61# reference design ushers in the era of Industry 4.0. With a complete analog front-end for the next generation of ultra-small programmable logic controllers, this design meets the higher resolution and higher voltage needs of industrial control and industrial automation applications, while consuming minimal power and space. This high-performance system features four channels of analog input, a complete, efficient power-supply system and on-board processing. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
The MAXREFDES70# reference design is a high-precision, low-cost, low-power consumption, battery-powered heat/flow meter featuring the MAX35101 ultrasonic time-to-digital (TDC) converter with analog front-end (AFE). The reference design provides a high-performance flow/heat meter design platform that works as a foundation for many specific meter applications. The system utilizes the ultrasonic time-of-flight (TOF) measurement principle. A 3.6V, 4.0Ah, size A lithium -thionyl chloride battery powers the system and can last up to 20 years for typical use. Test results, hardware files, and firmware source code provide complete documentation for the design. The complete meter is also available for purchase.
The MAXREFDES38# subsystem reference design is a 3-channel, high-accuracy, low-power analog front-end solution for EPT/ECT and smart-grid current fault-sensing applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
The MAXREFDES75# is a high-resolution weigh scale reference design with a 0 to 10V output. The design, or strain-gauge measuring system, includes the MAX11270, a 24-bit, 64ksps, delta-sigma analog-to-digital converter ( ADC), and the MAX542, a 16-bit, 1µs settling time, 2 LSB (max) INL digital-to-analog converter (DAC). The MAXREFDES75# operates as a stand-alone reference board and includes calibration using a USB and a Windows ® PC.
The MAXREFDES62# reference design ushers in the era of Industry 4.0. With dual RS-485 communication channels for the next generation of ultra-small programmable logic controllers, this design meets the data rate and higher voltage needs of industrial control and industrial automation applications, while consuming minimal power and space. This high-performance system features one half-duplex RS-485 transceiver, one full-duplex RS-485 transceiver, a complete, efficient power-supply system and on-board processing. Hardware and firmware design files as well as results of lab measurements are provided.
The MAXREFDES63# reference design ushers in the era of Industry 4.0. This design meets the higher voltage needs of industrial control and industrial automation applications, while consuming minimal power and space. This high-performance system features eight channels of digital outputs and a complete, efficient power-supply system. Hardware and firmware design files are provided.
The MAXREFDES64# reference design ushers in the era of Industry 4.0. This design meets the higher voltage needs of industrial control and industrial automation applications while consuming minimal power and space. This high-performance system features eight channels of digital inputs and a complete, efficient power-supply system. Hardware and firmware design files are provided.
Maxim Integrated's MAXREFDES42# reference design is a low-power, IO-Link RTD temperature sensor compliant with IEC 61131-9. The system contains an RTD-to-digital converter, an IO-Link transceiver, an efficient step-down converter, and a display. The MAXREFDES42# comes preprogrammed and ready to connect with a version 1.1-compliant IO-Link master. Design files including the schematic, PCB, BOM, and firmware source code are available for download.
Maxim Integrated's MAXREFDES79# reference design is a fully compliant IO-Link version 1.1, 4-port IO-Link Master using a TEConcept software stack. The system contains four IO-Link master transceivers, a standard ARM® Cortex® M3 processor, and efficient industrial step-down DC-DC converters. The MAXREFDES79# comes preprogrammed and ready to connect with any compliant IO-Link device using a simple-to-use graphical user interface (GUI) program. Design files including schematic, PCB, BOM, GUI software, and compliance report are available for download.
Maxim Integrated's MAXREFDES37# reference design is a fully IO-Link ver1.1 compliant, four-channel servo driver using a TMG TE IO-Link device stack. The system contains an IO-Link device transceiver, a low-power RL78 processor, and efficient industrial step-down DC-DC converter. The MAXREFDES37# comes preprogrammed and ready to connect with any compliant IO-Link master such as the MAXREFDES79# IO-Link master with a simple-to-use graphical user interface (GUI) program. Design files including schematic, PCB, BOM, and IODD firmware files are available for download.
The MAXREFDES43# subsystem provides an I2C-based reference design for securing Xilinx FPGAs to protect IP and prevent attached peripheral counterfeiting. The system implements an I2C SHA-256 challenge-response between the FPGA and a DS28C22 secure authenticator with on-board memory. Boards for purchase, hardware, and firmware design files provide complete system information for rapid prototyping and development.
The MAXREFDES73# reference design is a wearable, mobile galvanic skin response system. Featuring the MAX32600 wellness measurement microcontroller, this battery-powered platform takes high-precision AC impedance measurements while consuming minimal power.