TI's TIDA-00318 is designed for low-power wearable devices, including a Qi-compliant wireless receiver (bq51003) and an ultra-low current single-cell Li-ion linear battery charger (bq25100). Its features are: ultra-small size (5x15mm2), supports charging current between 10mA~250mA and a minimum terminal current of 1mA.
The current design is suitable for 135mA charging current.
This proven design accurately measures current, voltage, and power on a bus carrying -48V and provides the data using an I²C-compatible interface. This design is suitable for telecom applications since most common telecom equipment is powered by this negative supply voltage. It uses INA226 and ISO1541. The INA226 is a current shunt/power monitor with an I²C compatible interface. The device will accurately process these measurements and convert the negative voltage to a ground reference signal using ISO1541. The ISO1541 is a low power bidirectional I²C compatible isolator.
The TIDA-00821 reference design is a stackable monitor and protector for use in large lithium-ion batteries that provides monitoring, balancing and communication functions. Each bq76PL536A-Q1 EVM can manage 3 to 6 cells in Li-ion battery applications. Up to 32 bq76PL536A-Q1 EVM modules can be stacked. The system provides fast cell balancing, diagnostic capabilities, and module-to-controller communication. In addition, an independent
protection circuit is integrated.
This reference design helps designers develop an ultrasonic water-metering subsystem using an integrated, ultrasonic sensing solution (USS) module, which provides superior metrology performance with low-power consumption and maximum integration. The design is based on the 256KB MSP430FR6047 microcontroller (MCU), with integrated high-speed, ADC-based, signal acquisition and an integrated low energy accelerator (LEA) to optimize digital signal processing.
This reference design demonstrates how to implement a capacitive touch button, commonly used as a setting button in a proximity switch, in an ultra-small 3.5mm wide PCB based on TI's CapTIvate™ technology. When combined with the highly integrated IO-Link PHY, flexible PNP or NPN outputs are possible. The SIO stage provides reverse polarity, ESD, EFT and surge protection, making the design compliant with IEC 61000-4 standards. Hall sensors with analog output signals enable flexible use by teaching the distance to magnetic objects via a capacitive teach button. This analog signal is captured by the MCU's integrated ADC.
This TI reference design is for an automotive high-side dimmable taillight that uses a BCM to provide the taillight. In this TI reference design, the high-side driver TPS1H100-Q1 is used to output PWM power with different duty cycles. Linear LED drivers TPS92630-Q1 and TPS92638-Q1 are used to drive LEDs with constant current.
This TI verified design implements a 16-bit differential 4-channel multiplexed data acquisition system at 400 KSPS throughput for high voltage differential inputs for ±20 V (40 Vpk-pk) industrial applications. The circuit is implemented with a 16-bit successive approximation register (SAR) analog-to-digital converter (ADC), a precision high-voltage signal conditioning front end, and a 4-channel differential multiplexer (MUX). This design details the use of the OPA192 and OPA140 to optimize a precision high-voltage front-end driver circuit to achieve the excellent dynamic performance of the ADS8864 .
Analog input and output modules are standard components of programmable logic controllers (PLCs) or distributed control systems (DCS). In these modules, the increasing number of channels per module and the thinner and thinner modules present design challenges for isolated power supplies. All designers facing these challenges will benefit from the TIDA-00237 as its total design size is less than 2.54x2.54mm and its height is less than 5mm. It uses a flyback approach, which means no optocoupler feedback is required, and has a wide input voltage range of 12V-36V. This design provides +/-15V and 5V isolated low-noise outputs, making it ideal for driving data converters or analog front ends.
The PCM1864 circular microphone board (CMB) is a low-cost easy-to-use reference design for applications that require clear-spoken audio, such as voice triggering and speech recognition. This TI Design uses a microphone array to capture a voice signal, and converts it to a digital stream that can be used by DSP systems to extract clear audio from noisy environments.
This reference design implements a reinforced isolated three-phase inverter subsystem using isolated IGBT gate drivers and isolated current/voltage sensors. The UCC23513 gate driver used is available in a 6-pin wide body package and LED light analog input, and can be used as a pin-for-pin replacement for existing optically isolated gate drivers. This design shows that the UCC23513 input stage can be driven using all existing configurations for driving optoisolated gate drivers. In-phase shunt resistor based motor current sensing is implemented using the AMC1300B isolated amplifier and DC link voltage, and IGBT module temperature sensing is implemented using the AMC1311 isolated amplifier. This design uses the C2000™ LaunchPad™ to control the inverter.
This reference design demonstrates how to use the IWR6843, a single-chip millimeter wave radar sensor from TI with an integrated DSP, to implement indoor and outdoor people counting applications while enabling sub-1GHz wireless communications. This reference design uses the MMWAVEICBOOST and IWR6843ISK evaluation modules (EVMs) and the LAUNCHXL-CC1352R1 wireless MCU LaunchPadTM. The solution is capable of locating people at distances up to 6 meters (close configuration) and 14 meters (long range configuration).
This PMP10600.1 reference design provides all the power rails required to power the Xilinx® Zynq® 7000 Series (XC7Z015) FPGA. This design uses multiple LMZ3 series modules, multiple LDOs, and a DDR termination regulator. It also has an LM3880 for power-up and power-down sequencing. This design uses a 12V input voltage.
This solution is designed to create a size-optimized integrated power design for ADAS applications using the TDA3x SoC (no automotive battery input required). By targeting only applications that require lower processing performance, we can select smaller devices and components than systems with higher performance processors.
Active Balance chipset used in large lithium-ion batteries provides monitoring, balancing and communication functions. With precise and reliable active balancing, Active Balance BMS enables bidirectional power transfer within each cell. Each EM1401EVM can manage 6 to 14 cells (up to 60V) in Li-ion battery applications. EM1401EVM modules can be stacked up to 1300V. The system provides fast cell balancing, diagnostic functions and modules for controller communication. An independent protection circuit is also provided.
The design converts an 8V-42V DC input into a 5.1V output and is protected by the TPS2546-Q1 programmable current protection switch. Its handshake protocol enables fast charging of smartphones/tablets/handheld devices. By detecting the load current and adjusting the DC/DC output voltage, this design can implement linear USB cable differential compensation function to keep the USB port voltage within a limited range. This design is suitable for devices such as vehicle-mounted hosts and remote USB hubs.
This processor-based reference design helps speed time to market and helps customers design cost-effective human-machine interface (HMI) solutions for electric vehicle (EV) charging infrastructure or EV power supply equipment (EVSE). This reference design demonstrates the two-dimensional (2D) Qt graphical user interface (GUI) common to EVSE HMI, as well as TI processor capabilities for software-rendered graphics. The AM335x processors provide scalability and a variety of processing speeds and compatible software to meet the needs of low-end to high-end applications. They also provide ample connectivity, including key peripherals required for EVSE HMI such as universal asynchronous receiver/transmitter (UART) and CAN).
The SimpleLink™ Multi-Standard CC2650 Remote Control Reference Design is an all-in-one solution for the development of voice-based Bluetooth® Low Energy, ZigBee® RF4CE™ or multi-standard remote control. This reference design shows the recommended decoupling and RF layout for optimal RF performance. This design uses discrete components for the balun and filter, as well as an inverted F-shaped PCB antenna to provide good performance at low cost.
This reference design is a power supply optimized specifically for powering eight 16-channel receive AFE ICs in ultrasound imaging systems. This design uses a single-chip DC/DC converter + LDO combo regulator to set each LDO input just above the dropout voltage while fully utilizing the LDO PSRR, thereby reducing parts count while maximizing efficiency. In addition, ultra-low noise LDOs help achieve the highest possible analog-to-digital conversion resolution, resulting in higher image quality. The design's ability to synchronize the switching frequency with the master clock frequency and the system clock frequency allows system designers to apply simple filtering techniques to eliminate power switching noise on ground loops or use spread spectrum clocking to reduce EMI. Additionally, the design implements an electronic fuse device, providing a simple and flexible method of overcurrent protection.
TIDA-00677 TI reference design demonstrates a solution for automotive LED taillight applications (tail/brake lights, turn signals, reverse lights) using the TPS92630-Q1 linear LED driver powered by an upstream buck converter (TPS65321-Q1) scheme, the converter is powered directly by the car battery voltage through the smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. For a similar design powered directly from the car battery, see TIDA-00679, a reference design that is powered directly by the car battery voltage through a smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. See TIDA-00679 for a similar design powered directly from a car battery.
The TIDA-00705 is an ultra-compact (1”x1”x1”) high-efficiency bidirectional DC to DC power converter capable of delivering 480W for low energy storage (LES) and battery backup power applications. Specifically, it is designed for server battery backup Unit (BBU) embedded server PSU. The reference design is based on a two-phase spaced half-bridge power stage controlled using the UCD3138 digital power stage controller. The design has built-in DC bus overcurrent, overvoltage protection and battery overcurrent, overvoltage protection. Voltage protection and phase current balancing to dissipate heat.