This intelligent atmospheric environment and corrosive monitoring platform integrates hardware, software, and network. With the stable performance IACM-321 platform system as the core, it realizes multi-level dynamic networking and remote status monitoring. It can be monitored in the monitoring/operation and maintenance center. The front-end system provides centralized monitoring and unified management, and uses customized intelligent terminals to achieve mobile monitoring. Convenient Click connect sensor interface, easy to install on smart terminals.
TIDA-00827 is an integrated sensor-based BLDC motor controller reference design for low-power, battery-powered brushless DC motor applications. The 8 to 35V operating voltage range supports 3S to 6S lithium polymer battery power supplies. Specific applications include camera heads, low-power fans and robots. The motor controller consists of the MSP430G2353 16-bit, ultra-low power microcontroller and the DRV8313 highly integrated 2.5A triple half-bridge driver. The MSP430G2353 utilizes Hall sensor-based communication feedback to provide the correct drive voltage to the motor through the DRV8313. Onboard potentiometers and buttons provide a simple interface to control the motor.
The project uses RSL10 to build a sugar glider health monitoring system. With good exercise and diet, my little jelly (sugar glider) can grow up healthily.
Both software and hardware are fully open source. The control board is designed based on STM32G4. This upgrade adds a flexible I/O subsystem and expands the types of feedback encoders and peripherals that the controller can receive.
This reference design functions from a base of silicon carbide (SiC) MOSFETs that are driven by a C2000 microcontroller (MCU) with SiC-isolated gate drivers. The design implements three-phase interleaving and operates in continuous conduction mode (CCM) to achieve a 98.46% efficiency at a 240-V input voltage and 6.6-kW full power. The C2000 controller enables phase shedding and adaptive dead-time control to improve the power factor at light load. The gate driver board (see TIDA-01605) is capable of delivering a 4-A source and 6-A sink peak current. The gate driver board implements a reinforced isolation and can withstand more than 100-V/ns common-mode transient immunity (CMTI). The gate driver board also contains the two-level turnoff circuit, which protects the MOSFET from voltage overshoot during the short-circuit scenario.
The work is mainly based on smart watches as a product that contributes to mine operations. The shape of [RSL10-SENSE-GEVK] is perfect for making a watch. All the onboard peripherals are utilized. The watch will collect data every once in a while and store it in the onboard external Flash. A total of fourteen days of historical data can be stored. If the power consumption is reasonably designed, it can Replace the button battery every two months. Normally worn in the normal mode, you can enter the downhole mode by pressing the button. In the downhole mode, the surrounding environment will be detected. When the environment reaches a bad situation, it will enter the alarm state. At the same time, when the person going down the pit feels uncomfortable, he can long press the button to enter the call for help state.
Using a current-sense amplifier, a high-side MOSFET driver, and a latching voltage monitor a circuit can be easily constructed that protects from overcurrent conditions and operates at voltages as high as 26V.
MAXREFDES161# is a high-performance frequency synthesizer capable of generating frequencies from 23.5MHz to 6GHz. The on-board level translators allow the board to be compatible with +3.3V and +5V microcontroller platforms. Moreover, the low-noise low dropout regulators (LDOs) provide clean power supplies for optimal performance. The board is designed specifically for the Arduino® form-factor pinout.
This TPS65218-based reference design is a compact integrated power solution for the Xilinx® Zynq® 7010 SoC/FPGA (part of the Zynq® 7000 product family). This design shows the TPS65218 as an all-in-one PMIC used to provide the five power rails required to power the Zynq® 7010 SoC/FPGA. The TPS65218, including passive components, requires only 1.594 in 2 of total board area to provide five power rails to the Zynq® 7010 . TPS65218 has the flexibility to support DDR3L or DDR3 memory. This power management IC can be powered from a single 5V supply or a single Li-ion battery. This design is guaranteed to operate over the entire industrial temperature range (-40°C to 105°C).
The TIDA-00573 reference design provides a Class D-based amplifier solution that can be evaluated in a typical Class AB amplifier form factor. The design is optimized to reduce the heat associated with audio amplifiers and minimize the switching noise associated with Class D amplifiers. This design consists of two parts. Part 1 focuses on the audio amplifier module, while Part 2 focuses on the circuitry required when incorporating it into a base board. This pair of boards allows independent performance testing of this design.
Based on STM8S003K3 microcontroller, it has alarm and chime functions and automatic light sensing function.
The EVLKST8500GH hybrid connectivity solution for the ST8500 SoC platform combines the advantages of both PLC and RF technologies to enable applications with the best coverage in any network conditions and topologies.
The PMP10733 uses the LM5160 in a Fly-Buck-Boost topology with the primary side set to a negative voltage. Setting the primary side to a negative voltage reduces the turns ratio of the transformer and therefore allows for better line and load regulation. The primary and secondary voltages are set to negative 15V and positive 15V respectively. The maximum operating current on the primary and secondary voltage rails is set to 150mA. The switching frequency is set to 200kHz.
This design is a low-power DCDC step-down module based on XL1509
The MicroByte is a tiny console capable of running games from the NES, GameBoy, GameBoy Color, Game Gear and Sega Master systems, with all components designed into this 78 x 17 x 40 mm package.
The MAXREFDES38# subsystem reference design is a 3-channel, high-accuracy, low-power analog front-end solution for EPT/ECT and smart-grid current fault-sensing applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
12 V - 5 W isolated flyback converter based on VIPer122LS