This TI design uses Texas Instruments' nanopower system timers, SimpleLink™ ultra-low power wireless microcontroller (MCU) platform, and humidity sensing technology to demonstrate an ultra-low power approach to driving a sensor end node. These technologies enable extremely long battery life: more than 10 years on a standard CR2032 lithium-ion coin cell battery. This TI Design includes system design techniques, detailed test results, and information to get your design started and up to speed.
This efficient, high-power reference design uses the LM5119 dual-phase synchronous buck controller to regulate 14.4V at 60A. This design can be used to feed a single vehicle battery source from a dual-battery system commonly found in trucks. Features include input EMI filtering, output hot-swap protection, input/output current monitoring, and temperature monitoring.
FRDM-KW24D512 is a development platform for KW24D512 Kinetis ® W MCU, supporting Bluetooth Low Energy and EEE 802.15.4.
This TI reference design is an automotive dashboard signaling solution that contains a monolithic, medium voltage, low current power 12-bit shift register designed specifically for use in systems requiring relatively moderate load power, such as LEDs in car dashboards. This design is part of a complete automotive dashboard system solution optimized for the mid-range dashboard market. The entire solution supports 4.5-40V system functionality and can withstand cold crank, start-stop and load dump conditions.
The TIDEP0084 reference design shows how to connect sensors to the cloud over long-range sub-1GHz wireless networks suitable for industrial environments such as building control and asset tracking. It is powered by TI Sitara™ AM335x processors and SimpleLink™ sub-1GHz CC1310/CC1350 devices. This reference design comes pre-integrated with TI's 15.4-Stack Software Development Kit (SDK) and Linux® TI Processor Software Development Kit (SDK) for sub-1GHz star networking. TI Design Network Partner stackArmor enables cloud connectivity and visualization of sensor node data through cloud application services.
This note describes a triple-output, high efficiency, POE (Power over Ethernet) power supply with synchronous rectification. The supply has ±5% regulation an all outputs and meets all the IEEE802.3af requirements. The topology for the dc-dc converter is a continuous current flyback. The switching frequency for the primary PWM is 275 Khz.
Supercapacitors, by their very name, provide unique benefits in modern electronics.
This application note presents a reference design for a 4S1P MR-16 LED driver that provides 750mA to a string of four white LEDs (WLEDs). The circuit operates from a 24V source and is based around the MAX16820 hysteretic LED driver. Also included is a MAX5033 24V-to-5V, 150mA switching power supply to power a Nuventix® pulsating LED cooler.
As LEDs are becoming more and more popular, so is the need for small, cost-effective solutions. The MAXREFDES1080 is a constant-current, high-brightness LED (HB LED) driver. It delivers 5W of power to a single LED string, which is included in the design. The circuit is in a step-down configuration and is designed for a 12V input.
The design provides all the power supply rails and power sequencing necessary to power Xilinx® ZU9/15 Wireless Backhaul power supplies. The MAX15303, MAX20730, MAX17541G and MAX17509 ICs are used to generate all seven rails.
The TIDA-00892 reference design provides a compact solution capable of generating isolated DC power while supporting isolated RS-485 communications. This reference design contains a reinforced digital isolator with integrated power supply and an RS-485 communications transceiver.
Fuses are used in many products to protect against possible damage caused by current surges and overcurrents. Traditional fuses used in the automotive space have lower accuracy and longer response times. The TIDA-00795 Automotive Precision Electronic Fuse Reference Design is an alternative to traditional fuses that is more accurate and offers capabilities not found in traditional fuses. This electronic fuse reference design can be used as a building block for implementing a multi-channel electronic fuse box. It can also be used in body control modules (BCM) and electronic control units (ECU).
The MAX17506 is a high-efficiency switching regulator that delivers up to 5A load current at output voltages from 0.9V to (0.9 x VIN). The device integrates the highside MOSFET and operates over 4.5V to 60V, making it ideal for on-board point-of load and post-regulation applications.
This is a 35W 19.0V/1.84A USB adapter reference design using quasi-resonant PWM integrated circuit ICE2QS03G, CoolMOS™ IPD60R600P6 (DPAK), 2 small signal low voltage MOSFETs 2N7002 and high-speed switching diode BAS21-03W in a short brick shape , peak power is 45W, lasting 2 milliseconds.
The MAX17509 integrates two internal switch step-down regulators with programmable features. The device can be configured as two single-phase independent power supplies or as a dual-phase, single-output power supply. The device operates from 4.5V to 16V input and generates independently adjustable output voltage in the ranges of 0.904V to 3.782V and 4.756V to 5.048V, with ±2% system accuracy. The MAX17509 provides maximum flexibility to end-users by allowing them to choose multiple programmable options by connecting resistors to the configuration pins. Two key highlights of the device are the self-configured compensation for any output voltage and the ability to program the slew rate of LX switching nodes to mitigate noise concerns. Noise-sensitive applications, such as high-speed multigigabit transceivers in FPGAs, RF, and audio, benefit from this unique slew-rate control. SYNC input is provided for synchronized operation of multiple devices with system clocks.
To meet the increasing demands for isolated Power over Ethernet (PoE) power solutions, Maxim’s power supply experts have developed innovative, isolated, PoE, powered device (PD) power solutions. These isolated PoE power solutions efficiently convert high voltage PoE power into 5V and 12V outputs, respectively. Each design was tested for load and line regulation, as well as efficiency and transient performance. These boards feature a module architecture, with through-hole pins for immediate board placement and accelerated prototyping.
This reference design is a dual string LED driver that implements an operational amplifier based circuit which balances the current in two LED rings. The operational amplifier circuit senses current in a reference string and uses feedback from a mirrored string to bias a MOSFET that egulates the current between the strings. The design uses the TPS92692-Q1 multi-topology LED driver in a boost configuration to drive the LEDs. The TPS92692-Q1 features spread spectrum frequency modulation for EMI performance, analog current adjustment and internal PWM dimming. This design includes adjustable linear thermal foldback using the LMT87-Q1 analog temperature sensor, as well as current limiting, in the event the mirrored string fails open circuit. The design also features two brightness modes. One mode is a full brightness mode ('DRL') and the other is a PWM dimming mode ('Position') which reduces brightness.