• ASL5115EVBMST: MLC ASL5115SHN Evaluation/Development Board

    The ASL5115EVBMST is the main evaluation board for NXP's Matrix LED Controller (MLC) ASL5115SHN, which enables evaluation of external lighting systems.

  • FRDM-K32L2B3: NXP Freedom Development Platform for K32 L2B MCUs

    The FRDM-K32L2B3 Freedom development board provides a platform for the evaluation and development of the K32 L2B MCU series.

  • KITPF8200FRDMPGM: PF8200/PF8100 programming board

    The KITPF8200FRDMPGM is a programming board with a 56-pin QFN socket that is compatible with all PF8100/PF8200 series devices. This kit integrates all the hardware required to program the OTP registers in the PMIC.

    Schematic PCB

  • Automotive Linear LED Driver Reference Design for Center High Mount Stop Light (CHMSL)

    This reference design details a highly integrated solution for driving CHMSL (including brake and reverse light) LEDs. Each light is capable of operating independently by feeding power to its supply line. The design uses three automotive-qualified linear LED drivers (TPS92610-Q1) to achieve a low BOM count but feature-rich solution. The design also includes protection features to protect against load dump conditions and reverse battery conditions while maintaining a small solution size.

    Schematic PCB

  • Temperature-based heating system designed for automotive engine preheaters

    This reference design describes how to design hardware for a temperature-based heating system for a vehicle that has an engine preheater installed, based on ambient temperature and a preordained engine start time. This system can also be used for other purposes, such as turning on a storage heater if the ambient temperature falls below a preordained value.

  • 480W, 97% Efficiency Ultra-Compact (480W/in3) Bidirectional DC/DC Reference Design

    The TIDA-00705 is an ultra-compact (1”x1”x1”) high-efficiency bidirectional DC to DC power converter capable of delivering 480W for low energy storage (LES) and battery backup power applications. Specifically, it is designed for server battery backup Unit (BBU) embedded server PSU. The reference design is based on a two-phase spaced half-bridge power stage controlled using the UCD3138 digital power stage controller. The design has built-in DC bus overcurrent, overvoltage protection and battery overcurrent, overvoltage protection. Voltage protection and phase current balancing to dissipate heat.

    Schematic PCB

  • CISPR 25 Category 5 USB Type-C port reference design with USB 3.0 data support

    TIDA-00987 is a reference design for automotive media ports requiring data transmission. This design supports USB 2.0 and USB 3.0 data via the 15W USB Type-C™ port. Customers can accelerate their media port systems by leveraging a complete reference design that includes AEC-Q100 compliant CISPR 25 Category 5 tested analog integrated circuits (ICs). This design creates a reliable and flexible solution that allows the system to charge USB Type-C and legacy devices in a small 1 x 2.5-inch solution.

    Schematic PCB

  • Based on STM32 crowd positioning, speed-adjustable smart fan design (program, design report, video demonstration)

    Based on STM32 crowd positioning, speed-adjustable smart fan design (program, design report, video demonstration).

    Schematic PCB

  • CISPR25 automotive taillight reference design based on buck + linear LED driver system

    TIDA-00677 TI reference design demonstrates a solution for automotive LED taillight applications (tail/brake lights, turn signals, reverse lights) using the TPS92630-Q1 linear LED driver powered by an upstream buck converter (TPS65321-Q1) scheme, the converter is powered directly by the car battery voltage through the smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. For a similar design powered directly from the car battery, see TIDA-00679, a reference design that is powered directly by the car battery voltage through a smart battery reverse diode. The design has also been EMI/EMC radiation and pulse tested according to CISPR25 and ISO 7637-2. More information on potential cost savings and high efficiencies (power dissipation, system thermal performance) can be found in the user guide. See TIDA-00678 for a similar design driven by a boost converter. See TIDA-00679 for a similar design powered directly from a car battery.

    Schematic PCB

  • Gesture remote control

    Use sensortile.box equipped with high-performance six-axis sensor lsm6dsox to realize gesture remote control.

    Schematic PCB

  • TEA2095DB1574: Dual SR controller TEA2095 GreenChip add-on board for resonant power supplies

    The TEA2095 add-on board is designed for incorporation into existing resonant power supplies by replacing the secondary rectifier diodes. The add-on board consists of the TEA2095 Dual SR controller IC and low-ohmic MOSFETs in LFPAK package.

    Schematic PCB

  • Automotive discrete SBC pre-boost, post-buck reference design using CAN

    The TIDA-01429 reference design uses a wide input voltage boost controller followed by a wide input voltage buck converter set to 5.0V. A 5.0V supply is used to power the controller area network (CAN) transceiver, and a compact 3.3V fixed-voltage linear dropout (LDO) regulator is used to power the C2000 microcontroller. This design has been tested for CISPR 25 radiated emissions according to the anechoic chamber (ALSE) method, CISPR 25 conducted emissions using the voltage method, and Bulk Current Injection (BCI) resistance according to ISO 11452-4, all tested at CAN communication operates at a speed of 500KBPS. This is an Electromagnetic Compatibility (EMC) tested, 3-level power tree reference design using Controller Area Network (CAN) that can be used in a variety of automotive applications that require operation at input voltages as low as 3.5V. A system basis chip (SBC) is an integrated circuit (IC) that combines several typical building blocks of a system, including transceivers, linear regulators, and switching regulators. While these integrated devices can provide size and cost savings in many applications, integrated devices do not work well in every situation. For applications that are less suitable for using an SBC, a better approach is to build discrete implementations of the above building blocks to create a discrete SBC.

    Schematic PCB

  • IH induction cooker inverter circuit

    This reference design provides design guidelines, data, and other content for an IH induction cooker inverter circuit based on voltage resonant soft switching.

    Schematic PCB

  • Motor current detection system solution based on ADSP-CM408 and AD7403

    For small and medium power motor applications, the EPSH-MPC development platform provides current sampling of the isolated analog-to-digital converter AD7403. The external current loop is converted into a corresponding shunt voltage through a shunt resistor and input to the voltage test terminal of the AD7403. The AD7403 outputs according to the clock signal given by CM408F. ADC bit stream, CM408F enables the built-in SINC filter on the input bit stream to calculate the corresponding 16-bit ADC value, and stores the data into the corresponding ring queue through DMA. The host computer software can use the UART-USB port Or obtain the display of data samples through the RS485 port, you can intuitively see the acquisition effect of AD7403, and the collected data can be stored in an excel table to facilitate corresponding analysis of the data.

    Schematic PCB

  • MAXREFDES1084: Small 12W DC-DC Flyback Converter Using the MAX17596

    The MAXREFDES1084 is a miniature, 24V output, isolated power supply that can deliver up to 0.5A of load current. The design uses the MAX17596 peak-currentmode controller in discontinuous-conduction mode (DCM) flyback topology running at 125kHz. The input voltage range of the MAX17596 is 4.5V to 36V. However, an extra bias winding from the transformer is used to power the controller. This allows the input operating voltage to go up to 60V for this design.

    Schematic PCB

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号