MAXREFDES89# is an mbed®-compatible shield for the rapid development of brushed DC motor applications. The shield contains four MAX14871 full-bridge DC motor drivers for driving up to 4 motors. A MAX17501 DC-DC converter allows the system to operate from a single 7 to 36VDC power supply. Four MAX4704 4:1 multiplexers permit setting the current regulation mode of the MAX14871, while two MAX5387 digital potentiometers provide the ability to set the motor current limit. A MAX7300 GPIO expander supports interfacing each motor driver circuit to the mbed enabled microcontroller platform.
The TIDA-00262 reference design is a high-speed serial video interface that allows remote automotive camera modules to be connected to a display or machine vision processing system. This design uses TI's FPD-Link III SerDes technology to transmit uncompressed megapixel video data, bidirectional control signals and power over shielded twisted pair or coaxial cable.
This TI reference design is a 3.1W mono fully differential audio power amplifier for driving chimes as part of a complete automotive dashboard system solution optimized for the mid-range dashboard market. The entire dashboard solution supports 4.5-40V system functionality and can withstand cold crank, start-stop and load dump conditions.
This TI precision verification design circuit converts the differential current output of an audio DAC into a single-ended voltage that can drive low-impedance headphones. This design achieves the high-fidelity performance levels currently being promoted in cell phones and mobile audio players.
The QC4.0/4.0+ 18W Mobile Charger enables the design of power supplies featuring low standby power with the output voltage in full regulation, very high-efficiency and high-reliability. The NXP® chipset used is targeting mobile and notebook power supplies with power requirements up to 100W. Supplies can be designed easily and with a minimum number of external components.
This project uses the LSM6DSOX+STEVAL-MKI109V3 mode for preliminary sensor learning and research, mainly from training the acceleration sensor to detect vibration and recording vibration waveforms, training the gyroscope sensor to detect the vibration direction and offset, and recording the waveform for analysis; combined with the acceleration sensor and the action data of the gyroscope sensor can determine the vibration intensity and direction of the wind turbine tower under various working conditions; in practical applications, the LSM6DSOX sensor is combined with the low-power chip STM32L010RBT6 chip, and the main control board on the local side leads to an alarm relay. The outlet is used for alarm output on the wind turbine tower side. It is connected to the wind turbine scada system through 485 serial port communication to upload the recorded data on the local side to provide real-time feedback on the working status of the wind turbine tower. It can be used to analyze the vibration reverse and wind turbine tower vibration. Swing direction recording can also record and analyze the natural frequency of the wind turbine tower under normal conditions and the natural frequency during faults. The multi-faceted data forms a wind turbine tower disaster warning system that can be sensed in advance;
The PMP10116 reference design utilizes the UCC28063A conversion mode PFC controller to drive LEDs up to 700mA from the AC input. This flyback PFC topology provides isolation and uses quasi-resonant mode control. It supports analog dimming at the output. See UCC28060 Interleaved AC-DC Single-Stage Flyback-Based LED Driver for design guidelines
Low-cost, 8-channel, simultaneous sampling data acquisition system with 84 dB SNR and excellent channel-to-channel matching
Ultra-stable 3-axis gyroscope based on L3GD20
This Freedom board covers both devices of the MC32XSG series and presents a friendly solution for use with Arduino and Kinetis software drivers
This design is a sensored three-phase brushless DC motor controller that uses a single PWM input to control speed and three active-high Hall sensors to detect rotor position. The DRV8305's integrated communication table simplifies the microcontroller firmware required for correct commutation. The DRV8305 automatically handles dead time insertion and gate drive current control, both of which are adjustable through the driver SPI interface.
This proven design accurately measures current, voltage, and power on a bus carrying -48V and provides the data using an I²C-compatible interface. This design is suitable for telecom applications since most common telecom equipment is powered by this negative supply voltage. It uses INA226 and ISO1541. The INA226 is a current shunt/power monitor with an I²C compatible interface. The device will accurately process these measurements and convert the negative voltage to a ground reference signal using ISO1541. The ISO1541 is a low power bidirectional I²C compatible isolator.
This reference design is a battery initialization reference design solution for automotive and battery applications. The module enables a high efficiency single stage conversion for charging and discharging the battery. This design features a 0.1% accurate current control loop using the high performance INA225 current sense amplifier. The design was achieved in a compact form factor (40mmX143mmX20mm).
This reference design uses the MSP430FR4133 FRAM-based MCU and is a remotely controlled, full-featured, battery-powered magnetic pulse water meter with wired and wireless automatic meter reading (AMR) capabilities. The instantaneous flow rate and total flow rate will be displayed on the LCD screen. The design operates in a low-power mode and reduces CPU workload, thereby helping to reduce overall power consumption.
This TI reference design combines a Texas Instruments (TI) low-voltage H-bridge motor driver with an integrated LDO voltage regulator and an ultra-low-power microcontroller (MCU) to demonstrate a comprehensive implementation of a battery-powered electric toothbrush. .