This reference design is a power stage for brushless motors in battery-powered garden tools and power tools rated up to 1 kW, powered by a 10-cell lithium-ion battery with a voltage range of 36 to 42 V. This design uses 60V N-channel NexFET(TM) with ultra-low drain-to-source resistance (RDS_ON) of 1.8 mΩ in a SON5x6 SMD package, resulting in a small 57 × 59 mm PCB footprint. This design uses a three-phase gate driver to drive the three-phase MOSFET bridge, which can operate from 6V to 60V and supports programmable gate current with a maximum setting of 2.3A sink/1.7A source. The C2000™ Piccolo™ LaunchPad™ LAUNCHXL-F28027 is used with this power stage and implements 120-degree trapezoidal control of BLDC motors via Hall sensors in software. The gate driver's cycle-by-cycle current limiting feature limits the maximum current allowed in this power stage to a safe level, thereby protecting the board from overcurrent issues caused during motor shutdown.
This reference design is a high efficiency, high power density and light weight resonant converter reference design. It converts a 390V input to a 48V/1kW output. The PMP20637 power stage has over 140W/in^3 power density. The whole board weight is less than 210g. With fixed 950kHz switching frequency in steady state, 97.6% peak efficiency is achieved.
This reference design delivers an accurate output current limit solution for the TPS61088 boost converter. This feature is realized by an output current sense resistor and a low cost operational amplifier. When the output current is higher than the current limit point, the output of the operational amplifier will be higher than the TPS61088’s 1.204V reference voltage. So the output voltage drops. If the output current continuously increases, the output voltage will be further decreased. Thus the maximum output power will always be limited below a certain level.
The PMP15007 uses the LM5161-Q1 in Fly-Buck topology with both primary and secondary output voltages set to 5V nominal. This circuit can accommodate a voltage input range of 36V to 72V, making it ideal for a 48V nominal input voltage rail. The primary side is set to 5.32V nominal and the secondary isolation side is 5V with feedback resistors and is based on Coilcraft LPD8035V series coupled inductors set to a 1:1 turns ratio. The maximum operating current is set to 225mA on both the primary and secondary voltage rails. The switching frequency is set to 315kHz nominal.
The USB Type-C™ and Power Delivery (PD) MicroDock Evaluation Module (EVM) provides a complete USB Type-C dock reference solution including audio, USB data, power delivery and video. The EVM has a small 2-inch × 4-inch form factor and supports both sourcing and sinking power capabilities through the USB Type-C PD host port. Video output capabilities include DisplayPort and HDMI.
This TI Precision Verified Design provides the principles, component selection, simulation, PCB design and measurement details for a single-ended input of a specific differential output circuit that converts a single-ended input from +0.1V to +2.4V ±2.3V differential output on a single +2.7V supply. The output range is specifically limited to maximize its linearity. This circuit consists of 2 amplifiers. An amplifier acts as a buffer, creating the voltage Vout+. The second amplifier inverts the input and increases the reference voltage to produce Vout-. Both Vout+ and Vout- range from 0.1V to 2.4V. The voltage difference Vdiff is the difference between Vout+ and Vout-. This will give a differential output voltage range of +2.3V.
This verification design utilizes a triangle wave generator and comparator to generate a pulse-width modulated (PWM) waveform with a duty cycle that is inversely proportional to the input voltage. The op amp and comparator generate a triangular waveform, which is then passed to one input of the comparator. By passing the input voltage to the other comparator inputs, a PWM waveform is generated. Negative feedback from the PWM waveform to the error amplifier is used to ensure high accuracy and linearity of the output. This design was constructed using the OPA2365 op amp, TLV3502 comparator, and REF3325 reference. Learn more about TI's high-precision designs
The PMP20634 reference design is an isolated DCM flyback design that provides a universal AC line input from 85V to 265V and produces a 12V output capable of handling a 12W load. The design uses the UCC28730 controller to achieve ultra-low standby power at no load. It achieves 85% efficiency in high and low voltage lines and measures 1 x 3 inches on a 2-layer circuit board.
The Noise Tolerant Capacitive Touch HMI Design (TIDM-CAPTOUCHEMCREF) is a reference design for implementing a noise tolerant capacitive touch human machine interface (HMI). It integrates TI's MSP430FR2633 microcontroller (MCU) with high-performance CapTIvate™ touch technology and the TPS7A4533 linear regulator and UCC28910 flyback switch. This reference design demonstrates how a design that can pass challenging conducted RF immunity, electrical fast transient/burst immunity can be designed using a trinity design approach that includes hardware design techniques, CapTIvate technology peripheral functionality, and software signal technology. Hardware and software for system-level testing of electrostatic discharge immunity and electrostatic discharge immunity.
This "RF Layout Reference Design" demonstrates excellent decoupling and layout techniques for low power RF devices in the 868 MHz and 915 MHz bands.
PMP4497 is a GaN-based reference design solution suitable for Vcore applications such as FPGA and ASIC. With high integration and low switching losses, the GaN module LMG5200 enables high-efficiency single-stage 48V to 1.0V solutions, replacing traditional two-stage solutions. This reference design demonstrates the GaN performance and system advantages of this solution compared to two-level solutions. Low cost ER18 flat PCB transformer embedded on board. This reference design is compact in size (45mm*26mm*11mm). Further size reduction can be achieved by optimizing frequency and components.
This factory automation reference design uses Texas Instruments' DLP® Advanced Light Control Software Development Kit (SDK) for the LightCrafter™ family of controllers , allowing developers to integrate TI's digital micromirror device (DMD) technology with cameras and sensors. , motors or other peripherals to easily build 3D point clouds. With more than 2 million micromirrors, these high-resolution systems leverage the DLP® LightCrafter™ 6500 Evaluation Module (EVM), which features the DLP6500 1080p DMD, ensuring flexible control of precise graphics for structured lighting solutions in industrial applications.
The TIDA-01570 reference design is a complete solution for 76 to 81GHz radar sensor modules. The onboard power supply converts the vehicle battery input to the power rails required by the radar AFE, processor and CAN-FD transceiver. After processing, the target data is made available via the included CAN-FD physical layer.
There are currently more than 30 industry standards for Industrial Ethernet in the field of industrial automation. Some mature real-time Ethernet protocols such as EtherCAT, EtherNet/IP, PROFINET, Sercos III, and PowerLink require specialized MAC hardware support for FPGAs or ASICs. The Programmable Real-Time Unit within the Industrial Communication Subsystem (PRU-ICSS) exists as a hardware module of the Sitara processor family and will replace FPGAs or ASICs with a single chip solution. Firmware in PRU-ICSS can be used to detect the type of Industrial Ethernet protocol and load the corresponding industrial application into the Sitara processor during runtime. This TI Design introduces PRU-ICSS's multi-protocol Industrial Ethernet protocol detection firmware.
TIDM-ULTRASONIC-FLOW-TDC is a reference design for an ultrasonic flow meter (water, gas or heat meter) with LCD, using a time-to-digital converter and an ultra-low power MCU. The solution includes optimized leak detection, low power consumption and small form factor, which are important requirements for water, heat and gas meter applications. The design also includes a high-efficiency DC-DC converter for system power supply.
This reference design is a low standby and transport mode current consumption, high SOC metering accuracy, 13S, 48V Li-ion battery pack design. It monitors each cell voltage, battery pack current and temperature with high precision and protects lithium-ion battery packs from overvoltage, undervoltage, overheating and overcurrent. SOC metrology based on the bq34z100-g1 utilizes an impedance tracking algorithm to achieve up to 2% accuracy at room temperature. Utilizing a carefully designed auxiliary power strategy and the efficient low quiescent current DC/DC converter LM5164, this design achieves 50µA standby power and 5µA transport mode power, thereby saving more energy and extending transport and idle times. In addition, the design supports working firmware, which helps reduce product development time.
This reference design is a BeagleBone Black add-on board that allows users to explore TI's powerful Programmable Real-Time Unit (PRU) core and basic functionality. The PRU is a low-latency microcontroller subsystem integrated into Sitara's AM335x and AM437x family of devices. The PRU core is optimized for deterministic real-time processing, with direct access to I/O and ultra-low latency requirements. Featuring LEDs and buttons for GPIO, audio, temperature sensors, optional character display, and more, this add-on board provides schematics, bill of materials (BOM), design files, and design guides to allow designers to learn the basics of the PRU.
TIDA-00891 is designed to evaluate the HD3SS3220 device for UFP implementation. This reference design also serves as a hardware reference design for any implementation using the HD3SS3220 with a USB-C™ connector. Reference design files are available upon request to assist in PCB design using the HD3SS3220. This design provides layout files to guide you through the routing/location rules schematic to implement the TUSB321A. This reference design provides an onboard USB Type-A plug to connect to legacy USB systems. Please note that this reference design may contain test components that are intended for evaluation and are not suitable for production.
The TIDA-01333 Isolated High Voltage Analog Input Module Reference Design has eight channels, each supporting voltage and current measurements. In addition, 4 of the channels support common-mode voltages up to ±160V. The device provides isolation of the +5V line and serial peripheral interface (SPI) communications within a single chip via the ISOW7841. The design uses the ADS8681, a 16-bit analog-to-digital converter (ADC) that can handle input voltages up to ±12.288V. This eliminates the need for any preprocessing of standard input voltages found in industry.
Li-Ion battery formation and electrical testing require accurate voltage and current control, usually to better than ±0.05% over the specified temperature range. This reference design proposes a solution for high-current (up to 50 A) battery tester applications supporting input (bus) voltages from 8 V–16 V and output load (battery) voltages from 0V–5V. The design utilizes an integrated multi-phase bidirectional controller, LM5170, combined with a high precisiondata converters and instrumentation amplifiers to achieve charge and discharge accuracies of 0.01% full scale. To maximize battery capacity and minimize battery formation time, the design uses highly-accurate constant current (CC) and constant voltage (CV) calibration loops with a simplified interface. All key design theories are described guiding users through the part selection process and optimization. Finally, schematic, board layout, hardware testing, and results are also presented.