This document explains how the Fresno (MAXREFDES11#) subsystem reference design meets the higher resolution and higher voltage needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
The Sonoma (MAXREFDES14#) subsystem reference design performs accurate AC energy measurement while utilizing a unique, low-cost galvanic isolation architecture. The Sonoma meets the high-accuracy and low-cost needs of energy-measurement applications. This small form-factor design is available for purchase. Hardware, firmware design files, and lab measurements provide complete system information for rapid prototyping and development.
Many industrial and medical applications require temperature measurements with accuracies of ±1°C or better, performed with reasonable cost over a wide range of temperatures (-270°C to +1750°C) and often with low power consumption. This article describes design of the cost-efficient, portable, high-resolution data-acquisition systems (DAS) based on precision delta-sigma analog-to-digital converters (ADCs). It also presents formulas and software for implementation of standardized linearization calculation algorithms to accurately cover this wide temperature range while ensuring reproducible measurements.
This reference design shows how to develop a high-performance, high-voltage 2- or 3-wire 4–20mA current-loop transmitter suitable for industrial process control and smart sensors. Error analysis and overtemperature characterization data as well as hardware design and software are provided.
This document explains how the Campbell (MAXREFDES4#) subsystem reference design meets the higher resolution and isolation needs of industrial control and industrial automation applications. Hardware and firmware design files as well as FFTs and histograms from lab measurements are provided.
The Novato reference design (MAXREFDES16#) is a 16-bit, high-accuracy, loop-powered temperature transducer that transmits temperature information from a remote object to the central control unit over a 4–20mA current loop and using the highway addressable remote transducer (HART) communication protocol.
The Alcatraz (MAXREFDES34#) subsystem provides a reference design for securing Xilinx FPGAs to protect IP and prevent attached peripheral counterfeiting. The system implements a SHA-256 challenge-response between the FPGA and a DS28E15 secure authenticator. Boards for purchase, hardware, and firmware design files provide complete system information for rapid prototyping and development.
Maxim's Santa Cruz (MAXREFDES23#) reference design is the world's smallest IO-Link® light sensor compliant with IEC 61131-9. The Santa Cruz has six different types of sensors: ambient light (clear), red, green, blue, infrared, and is also a temperature sensor. The entire design fits onto a 6.5mm x 25mm printed circuit board (PCB).
The Palo Verde reference design (MAXREFDES33#) is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over a 4.5V to 60V input voltage range and delivering output current up to 300mA at 3.3V . Test results and hardware files provide complete documentation for designs. The board is also available for purchase.
Pasadena (MAXREFDES31#) is a highly efficient, flyback, 3.3V and 5V Class 4 powered device (PD) with a 40V to 57V auxiliary input. The design features the MAX5969B as the controller. The MAX5974A controls current-mode PWM converters and provides frequency foldback for both the auxiliary input and power-over-Ethernet (PoE) applications. The design is a high-performance, compact, IEEE® 802.3af/at compliant, cost-efficient solution for a PD with power level up to Class 4. The design can also support the auxiliary-input to provide approximately 21W output power.
The Petaluma (MAXREFDES30#) subsystem reference design is a cost optimized, high-speed and high-accuracy analog measurement solution for three-phase power monitoring applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
The Alameda (MAXREFDES24#) subsystem reference design features four dense, highly accurate analog outputs in a compact, galvanically isolated form factor. Each channel provides current or voltage. This design uniquely fits in programmable logic controllers (PLC), distributed control systems (DCS ), and other industrial applications. Hardware, firmware design files, and lab measurements are provided for rapid prototyping and development. The board is also available for purchase.
Maxim's MAXREFDES27# reference design is a tiny, low-power IO-Link ® optical proximity sensor compliant with IEC 61131-9. It contains an infrared (IR) receiver, matching IR LED driver, IO-Link transceiver, and efficient step-down converter. The entire design fits on an 8.2mm x 31.5mm printed circuit (PC) board.
Maxim's Power Amplifier Biasing (MAXREFDES39#) features a PA Bias circuit with the flexible Programmable Mixed Signal I/O (PIXI™) product, the MAX11300. The 2-stage amplifier design biases a 15W, LDMOS PA implemented with unprecedented simplicity, and is capable of biasing many existing PAs. Design files are available and boards are available for purchase.
Maxim's MAXREFDES36# reference design is an IO-Link, low-power, 16-channel digital input hub compliant with IEC 61131-9. It contains two octal digital input serializers, an IO-Link transceiver and efficient step-down converter. The entire design fits in a standard DIN rail printed circuit board (PCB) holder.
The MAXREFDES71# subsystem reference design has two high-speed and high-accuracy analog inputs and analog outputs for industrial motion control applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.
Maxim's MAXREFDES36# reference design is an IO-Link, low-power, 16-channel digital input hub compliant with IEC 61131-9. It contains two octal digital input serializers, an IO-Link transceiver and efficient step-down converter. The entire design fits in a standard DIN rail printed circuit board (PCB) holder.
The MAXREFDES48# reference design is a high-efficiency, high-precision, isolated DC-DC forward converter with an active clamp, current-mode PWM controller. The converter accepts 18V to 36V DC input and delivers output current up to 3.5A at 12V . Test results and hardware files provide complete documentation for the design. The board is also available for purchase.
The MAXREFDES41# reference design is a high-efficiency, high-precision, isolated DC-DC forward converter with an active clamp, current-mode PWM controller. The converter accepts 18V to 36V DC input and delivers output current up to 3.5A at 12V . Test results and hardware files provide complete documentation for the design. The board is also available for purchase.
The MAXREFDES72# reference design is a software configurable interface adapter that allows Pmod boards to be connected to Arduino headers. This board addresses the level shifting and pin multiplexing challenges associated with adapting these different interfaces.