• Simple Wireless Bluetooth Stereo Audio System for Outdoors

    When people want portable music, they usually rely on battery-powered audio devices. With a bit of engineering blood (or curiosity) running in your veins, it is not difficult to build a wireless Bluetooth® stereo audio system that can be controlled with any device that has a Bluetooth connection and a music player.

  • Temperature-based heating system designed for automotive engine preheaters

    This reference design describes how to design hardware for a temperature-based heating system for a vehicle that has an engine preheater installed, based on ambient temperature and a preordained engine start time. This system can also be used for other purposes, such as turning on a storage heater if the ambient temperature falls below a preordained value.

  • Kintex-7 series power module

    This reference design enables a complete power-supply solution for powering Xilinx® Kintex®-7 series field-programmable gate array (FPGA) using Maxim's power-supply solutions.

  • Powering the Zynq Evaluation and Development Board (ZedBoard)

    This reference design explains how to power the Xilinx Zynq Extensible Processing Platform (EPP) and peripheral ICs using Maxim's power-supply solutions.

  • Create a 1-Wire® Master with Xilinx PicoBlaze

    Designers who must interface 1-Wire® temperature sensors with Xilinx field-programmable gate arrays (FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable software mentioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The system implements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperature sensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.

  • CARMEL (MAXREFDES18#): High-precision analog current/voltage output

    The Carmel (MAXREFDES18#) subsystem reference design provides a high-accuracy analog current/voltage output in a compact, galvanically isolated form factor. This design uniquely fits programmable logic controllers (PLC), distributed control systems (DCS), and other industrial applications . Hardware and firmware design files and lab measurements are provided for rapid prototyping and development. The board is also available for purchase.

    Schematic PCB

  • PALO VERDE (MAXREFDES33#): Buck Converter

    The Palo Verde reference design (MAXREFDES33#) is a high-efficiency, high-voltage, synchronous step-down DC-DC converter with integrated MOSFETs operating over a 4.5V to 60V input voltage range and delivering output current up to 300mA at 3.3V . Test results and hardware files provide complete documentation for designs. The board is also available for purchase.

    Schematic PCB

  • PASADENA (MAXREFDES31#): 3.3V and 5V POE power devices

    Pasadena (MAXREFDES31#) is a highly efficient, flyback, 3.3V and 5V Class 4 powered device (PD) with a 40V to 57V auxiliary input. The design features the MAX5969B as the controller. The MAX5974A controls current-mode PWM converters and provides frequency foldback for both the auxiliary input and power-over-Ethernet (PoE) applications. The design is a high-performance, compact, IEEE® 802.3af/at compliant, cost-efficient solution for a PD with power level up to Class 4. The design can also support the auxiliary-input to provide approximately 21W output power.

    Schematic PCB

  • MAXREFDES27#: IO-LINK proximity detection light sensor

    Maxim's MAXREFDES27# reference design is a tiny, low-power IO-Link ® optical proximity sensor compliant with IEC 61131-9. It contains an infrared (IR) receiver, matching IR LED driver, IO-Link transceiver, and efficient step-down converter. The entire design fits on an 8.2mm x 31.5mm printed circuit (PC) board.

    Schematic PCB

  • MAXREFDES39#: Power Amplifier Biasing with MAX11300 PIXI

    Maxim's Power Amplifier Biasing (MAXREFDES39#) features a PA Bias circuit with the flexible Programmable Mixed Signal I/O (PIXI™) product, the MAX11300. The 2-stage amplifier design biases a 15W, LDMOS PA implemented with unprecedented simplicity, and is capable of biasing many existing PAs. Design files are available and boards are available for purchase.

  • MAXREFDES71#: Dual-channel analog input/analog output with transformer drive power

    The MAXREFDES71# subsystem reference design has two high-speed and high-accuracy analog inputs and analog outputs for industrial motion control applications. Hardware, firmware, design files, and lab measurements provide complete system information for rapid prototyping and development.

    Schematic PCB

  • MAXREFDES32#: Dual Channel Analog Input/Analog Output with Flyback DC Supply

    Maxim's MAXREFDES36# reference design is an IO-Link, low-power, 16-channel digital input hub compliant with IEC 61131-9. It contains two octal digital input serializers, an IO-Link transceiver and efficient step-down converter. The entire design fits in a standard DIN rail printed circuit board (PCB) holder.

    Schematic PCB

  • MAXREFDES48#: 24V to 12V, 40W isolated power supply with EFD20 core transformer

    The MAXREFDES48# reference design is a high-efficiency, high-precision, isolated DC-DC forward converter with an active clamp, current-mode PWM controller. The converter accepts 18V to 36V DC input and delivers output current up to 3.5A at 12V . Test results and hardware files provide complete documentation for the design. The board is also available for purchase.

    Schematic PCB

  • MAXREFDES41#: 24V to 12V, 40W isolated power supply with planar transformer

    The MAXREFDES41# reference design is a high-efficiency, high-precision, isolated DC-DC forward converter with an active clamp, current-mode PWM controller. The converter accepts 18V to 36V DC input and delivers output current up to 3.5A at 12V . Test results and hardware files provide complete documentation for the design. The board is also available for purchase.

    Schematic PCB

  • KPower supply design for Kintex Ultrascale FPGA: ultra-quiet, 1.8V, 1A

    This reference design provides a power-supply circuit with an input voltage of 3.3V, an output voltage of 1.8V, and an output current of 1A using the MAX8869 low-dropout linear regulator. The circuit was developed to power a MGTVCCAUX rail on a Xilinx® Kintex® Ultrascale™ FPGA. Included in this reference design are a schematic and a bill of materials.

    Schematic PCB

  • Power supply design for Kintex Ultrascale FPGA: PMBus compatible, strictly regulated, 1.80V, 2A

    This reference design provides a power-supply circuit with an input voltage of 10.8V to 13.2V, an output voltage of 1.80V, and an output current of 2A using the MAX15303 InTune™ Point-of-Load (PoL) Controller. The circuit was developed to power a VCC1V8 rail on a Xilinx® Kintex® Ultrascale™ FPGA. Included in this reference design are a schematic, applications information, and a bill of materials.

    Schematic PCB

  • Simulating the MAX17504EVKITB using SIMPLIS

    Evaluation kits (EV kits) are often the best tool for evaluating the applicability of a particular DC-DC converter for a specific application. Simulation, though never as accurate as the real hardware, is much faster and can be very effective for initial evaluations. Maxim Integrated’s MAX17504EVKITA is a 3.3V output EV kit for the MAX17504 member of the Himalaya family of high-voltage, synchronous step-down converters. The MAXIM_EESIM_MAX17504EVKITA.wxsch is a circuit file that enables simulation of this EV kit using the free EE-Sim SE simulation tool, downloadable from the Maxim Integrated website. EE-Sim SE is a variation of the commercial SIMPLIS/SIMetrix tool, which can also be used with this file.

  • MAXREFDES89#: MAX14871 full-bridge DC motor driver MBED platform

    MAXREFDES89# is an mbed®-compatible shield for the rapid development of brushed DC motor applications. The shield contains four MAX14871 full-bridge DC motor drivers for driving up to 4 motors. A MAX17501 DC-DC converter allows the system to operate from a single 7 to 36VDC power supply. Four MAX4704 4:1 multiplexers permit setting the current regulation mode of the MAX14871, while two MAX5387 digital potentiometers provide the ability to set the motor current limit. A MAX7300 GPIO expander supports interfacing each motor driver circuit to the mbed enabled microcontroller platform.

    Schematic PCB

  • MAXREFDES112#: Isolated, 24V to 12V, 10W flyback power supply

    This document details the MAXREFDES112# subsystem reference design, a 17V to 36V input, 12V output, flyback isolated power supply capable of 10W. Design files and test results are included. Hardware is available for purchase.

    Schematic PCB

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
community

Robot
development
community

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号