This 100 W reference design highlights the excellent power quality and high frequency performance of the half-bridge (HB) driver using the ICL5102 with the economical CoolMOS™ P7 series. The design takes full advantage of the applicable frequency range of the HB driver to create Highly compact LCC transformer. This transformer integrates the series inductance of the LCC resonant tank. Relying on this high power density transformer design, the high frequency operation capability can drive system cost and size reduction.
Huge, shiny, beautiful video displays with thousands of LEDs have always been out of reach of enthusiasts and small business owners due to their high cost and complexity. Pixblasters MS1 changes all that.
The PMP20774 reference design is a universal USB Type-C charger utilizing the LM5175 DC/DC and TPS25740B PD controller for aftermarket automotive charger applications. This design operates with a minimum input voltage of 6V and a maximum input voltage of 40V. This design is capable of delivering 3A continuously at 5Vout, 9Vout, 15Vout and 20Vout. The switching frequency is set to 350kHz. The waveforms are collected when the input voltage is 12V and 24V.
This brushed motor system uses an MSP430 microcontroller, a DRV8837 brushed DC motor driver, and a 12V brushed motor. This system is suitable for applications requiring speeds up to 10,300 RPM under no load conditions. The system measures 19 x 33 mm without motor, making it ideal for applications requiring a small footprint. The motor power supply voltage supports 1.8V to 11V, and the maximum current is 1.8A. There are various configuration options for easily controlling the rotation of the motor, changing the direction of rotation, and placing the system into a low-power state to reduce energy consumption when not in use. The motor drive platform incorporates protection against short circuit, breakdown, undervoltage and overheating.
Have you ever wanted to install a security camera in your home, garden or office? Although commercial Wi-Fi security cameras on the market are not expensive, if you want to install multiple ones in different scenes or rooms, it will cost a lot of money. Young engineer Max can develop a wireless security camera based on Espressif's ESP32 chip with only $15.
This design is a digitally controlled two-phase interleaved 700W power factor correction converter with added power metering capabilities. The power factor correction converter's two 180° phase-shifted boost power stages use a C2000™ Piccolo™ microcontroller, which also monitors line and neutral voltage waveforms for power metering functions. This design is able to achieve 97% efficiency and 1.5% THD (full load) with a power factor greater than 0.98. This design is an excellent choice for offline applications and AC/DC power supplies by minimizing power losses in the power stage, mitigating the reliability impact of harmonic distortion, and providing near-peak power factors.
The acceleration sensing unit (RSL10+KX023) attached to the back of the door is used to detect vibration and movement to detect events such as opening the door and knocking on the door. It also interacts with the terminal through information through BLE and can view the log on the handheld terminal. Handheld terminals are also implemented with RSL10. After powering on, it automatically scans the target device and connects to it. After connecting, it obtains the time and date information of the device (which can be modified at this time), and then enters the log interface. The wireless sensing unit and the BLE terminal exchange information through the BLE connection.
System example of an active cell balancing battery management system. The TMS570LS0432 microcontroller commands the EMB1402 EVM to monitor the battery cells and perform charge/discharge from one battery cell to an external 12V power supply. Users can view battery status and control battery balancing through a GUI running on the host PC.
This display reference design uses the DLP Pico™ 0.3-inch TRP HD 720p display chipset and is implemented in the DLP LightCrafter™ Display 3010-G2 Evaluation Module (EVM). This reference design enables high resolution in projection display applications such as mobile smart TVs, virtual assistant mobile projectors, digital signage and more. This design includes the DLP3010 chipset, which consists of the DLP3010 720p digital micromirror device (DMD), DLPC3433 display controller, and DLPA3000 PMIC/LED driver.
This reference design is a singled-layered, cost-effective, small-form-factor, three-phase sinusoidal motor drive for sensored BLDC fan motors specified up to a maximum current of 1 A RMS at 18 V maximum. The unique, single-sided design helps to bring down the system cost. The on-board Hall sensors facilitate the board mounting inside the motor itself. The design also demonstrates the features of DRV10970 such as single hall operation for further cost optimization, sinusoidal drive with adaptive drive angle adjustment for better system efficinecy and overall performance, speed control via external pulse-width modulation (PWM) input which brings an ease of speed control, etc.
Desktop CNC machines often use stepper motors, often because they do not require position feedback sensors, thus reducing system cost. But there are situations where a position feedback sensor is needed or necessary, and the power output of a stepper motor, especially at high speeds, becomes a bottleneck for those who want a better performing machine.
This reference design uses the boost converter TPS61021A to provide a high-efficiency LED driver circuit with dimming capabilities. The PWM dimming method can be used for one or two AA battery input applications, while the analog dimming method can be used for one AA battery input application. The PMP15037 enables dimming functionality by adding multiple resistors and a MOSFET to the circuit, making it a cost-effective and efficient solution for LED driver applications.